Luwang Jurangjero

Caves of Gunung Sewu, Java
Hypothermia in Cavers
Flooding and Survival
Accident First Aid
Expedition Medical Equipment
Unconformities in Cave Sediments
Articles for publication in CAVE SCIENCE may cover any aspect of speleology and related sciences, such as geology, geomorphology, hydrology, chemistry, physics, archaeology and biology. Articles on technical matters such as caving techniques, equipment, diving, surveying, photography and documentation are also accepted for publication as well as expedition reports, historical and biographical studies.

These notes are intended to help authors to prepare their material in the most advantageous way so as to expedite publication and to reduce both their own and editorial labour. It saves a lot of time if the rules below are followed.

All material should be presented in as close a format as possible to that of CAVE SCIENCE. Text should be typed double-spaced on one side of the paper only. If typing is impractical, clear, neat handwriting is essential. Subheadings, sectional titles, etc., within an article should follow as far as possible the system used in CAVE SCIENCE. In any case, they should be clearly marked, and a system of primary, secondary and tertiary subheadings, if used, should be clearly indicated and double-checked before submission.

Abstract: All material should be accompanied by an abstract stating the essential results of the investigation for use by abstracting, library and other services.

References to previously published work should be given in the standard format used in CAVE SCIENCE. In the text the statement referred to should be followed by the relevant author's name and date (and page number, if appropriate) in brackets. Thus: (Bloggs, 1999, p. 99). All such references cited in the text should be given in full, in alphabetical order, at the end. Thus: Bloggs, B. 1999. The speleogenesis of Bloggs Hole. Bulletin X Caving Assoc. vol. 9, pp 99-199. Books should be cited by author, date, title, publisher and where published. Periodical titles should be abbreviated in World List of Scientific Periodicals format if possible.

Acknowledgments: Anyone who has given a grant or helped with the investigation, or the preparation of the article, should be acknowledged briefly. Contributors in Universities and other institutions are reminded that grants towards the cost of publication may be available and they should make appropriate enquiries as early as possible. Expedition budgets should include an element to help publication, and the editor should be informed at the time of submission.

Illustrations: Line diagrams and drawings must be in BLACK ink on either clean white paper or card, or on tracing paper or such materials as kodatrace. Anaemic grey ink and pencil will not reproduce! Illustrations should be designed to make maximum use of page space. If photo-reduction is contemplated all lines and letters must be large and thick enough to allow for their reduction. Letters must be done by stencil, leterset or similar methods, not handwritten. Diagrams should be numbered in sequence, Fig. 1, Fig. 2, etc., and referred to in the appropriate place in the text by inserting (Fig. 1) etc., in brackets. Captions should be typed on a separate sheet if they are not an inherent part of the diagram.

Photographs are welcome. They must be good clear black and white prints with sharp focus, and not too much contrast. Prints about 15 x 10 cm (6 x 4 inches) are best. Experienced authors may make up their complete photo pages (Plates) with captions printed or electro-typed in, but other authors should lightly pencil the photo number on the back, type the caption on a separate sheet and indicate in the text the point where the photo is referred to. Thus: (Photo 1) etc.

Copyright: If any text, diagrams or photos have been published elsewhere, it is up to the author to clear any copyright or acknowledgment matters.

Speleological expeditions have a moral obligation to produce reports (contractual in the cases of recipients of awards from the Ghar Pahal Foundation). These should be concise and cover the results of the expedition as soon as possible after the return from overseas, so that later expeditions are informed for their planning. Personal anecdotes should be kept to a minimum, but useful advice such as location of food supplies, medical services, etc., should be included.

Authors may order reprints of their contribution for their own private use. The order must be notified to the Editor at the time of submission. Orders after publication cannot be accepted.

If you have any problems regarding your material, please consult the Editor in advance of submission. (Dr. T.D. Ford, Geology Department, University of Leicester, Leicester LE1 7RH. Phone 0533-554455, ext. 121, or 0533-715265).
CONTENTS

The Caves of Gunung Sewu, Java
 by R.G. Willis, C. Boothroyd and N. Briggs 119

Hypothermia in Cavers
 by John Frankland 154

Cave Flooding and Underground Survival
 by Paul Ramsden 160

Principles of First Aid Treatment following a major
cave accident
 by T. Lyons 167

Medical Equipment for Caving Expeditions
 by T. Lyons 171

Lateral Facies changes, Unconformities and Stratigraphic
Reversals: their significance for cave sediment stratigraphy
 by R.A.L. Osborne 175

Cover photo: Luwang Jurangjero main stream passage, Java

Published by and obtainable from:
The British Cave Research Association, 30 Main Road,
Westonzoyland, Bridgwater, Somerset TA7 OEB.

Copyright the British Cave Research Association, 1984. No part of
this publication may be reproduced in any other publication, used in
advertising, stored in an electronic retrieval system, or otherwise
used for commercial purposes, except for single copies for research
purposes, without the prior written consent of the authors and of
the Association.
THE CAVES OF GUNUNG SEWU, JAVA

R.G.Willis, C.Boothroyd and N.Briggs

ABSTRACT

Gunung Sewu is an area of spectacular limestone cone karst in southern Java and contains many cave entrances, the majority of which were explored in 1982. The remaining caves have now been explored and surveyed and a descriptive catalogue of caves in the area has been produced.

INTRODUCTION

The 1982 Gunung Sewu Cave Survey carried out a comprehensive programme of cave exploration and scientific study in order to provide information for the Ministry of Public works of the Government of Indonesia. This work was carried out on a sub-contract to Sir M.MacDonald and Partners, Civil Engineers, of Cambridge, with the purpose of identifying exploitable water resources. Due to a shortage of time it was not possible to carry out the survey of all caves in the area and the authors of this article returned to Java in August of 1983 in order to complete the project. This visit was undertaken at personal expense although considerable logistical support was provided in the field. 97 sites were visited of which 34 were caves in which almost 11km of passages were surveyed; the deepest system was 194m.

The Gunung Sewu karst, its geology, surface features and cave hydrology have been thoroughly summarised (Waltham et al. June 1983). The results of the 1983 explorations confirmed rather than altered the conclusions of this earlier study and this article therefore contains no discussions of geomorphology or hydrology.

The following catalogue, together with the report of the 1982 survey (see above) is intended to be a comprehensive and descriptive reference text for the Caves of Gunung Sewu. The suffix "82", following the description indicates that the survey of that cave was published in Cave Science Vol.10, No.2. The suffix "83" indicates that the site was visited in 1983; reference is made to other surveys contained in this text. The locations are marked on Plate 1. A key to the map references and corresponding site numbers is given at the end of the text.

Conventional notation is used on the cave surveys, except for three additional items added to evaluate the water resources which were the original purpose of the surveys. These are:

1) Figures beside water-flow arrows refer to dry season flow in litres per second.
2) Figures in square boxes refer to the depth in metres below the entrance.
3) Figures in round boxes refer to pool capacities in cubic metres.

The number sequence is the same as that used in the Luwang Register (Waltham et al, 1983) and reflects only the date of investigation. Each site description starts with a number, name and grid reference; G = Gua or cave, L = Luwang or sinkhole, S = Sumber or spring. After the grid reference, lengths and depths, P = pitch and C = climb are given in metres.

SINKHOLES AND CAVES OF GUNUNG SEWU

1. L.Bodeh. 740102. Depth 151m Length 238m. A descending passage leads to a series of short pitches to a horizontal passage and a choke. 50m before the choke a P14 and P22 lead to a narrow meandering passage which becomes too tight. Strong draught. Survey, Figure 1. 83.

2. L.Ceblok. 615128. Depth 92m Length 600m. P23,P25 to passage with pools to P9, two large chambers separated by a duck. Sump. 82 (Fig.6)
CAVES OF GUNONG SEWU

- Cave
- Cave passage
- Underground drainage
- Contour in metres
- Major village
- Principal road

MAP 1
LUWANG BODEH
GUNONG SEWU CAVE SURVEY
JAVA 1983
SITE 1
G.R.740102
BCRA Survey Grade 3 and 5b

LUWANG BENDO
GUNONG SEWU CAVE SURVEY
JAVA 1983
SITE 5 G.R.663113
BCRA Survey Grade 5b

LUWANG KARANG LAMPER
GUNONG SEWU CAVE SURVEY
JAVA 1983
SITE 7 G.R.659114
BCRA Survey Grade 5b

Fig 1
Fig 2
Fig 3
3. L.Goplak. 538068. Depth 85m. Large bell shaft entered by a 70m pitch. Dry and floored with mud and boulders. 82 (Fig.17)
4. L.Karangwetan. 515099. 50m of passage to pool. Narrow canyon continues.
5. L.Bendo. 663113. Depth 48m Length 86m. C2,P8,P6,P16,C2 to sump. Survey, Figure 2. 83.
6. L.Karang. 658114. 50m rift to choke. Very small stream leads off too tight. 83.
7. L.Karanglamper. 659114. Depth 89m Length 234m. A series of short shafts, each with a small pool at the base, are followed by a section of passage containing a percolation fed stream of about 0.5 litres per second. A 0.5m free-diveable sump leads to about 70m of canal passage with a capacity of about 100 cubic metres which terminates in a sump. Survey, Figure 3. 83.
8. L.Jurangjero. 669111. Depth 64m Length 587m. An impressive open shaft is situated at the end of an overgrown dry valley. The edge of the shaft is reached by an 8m pitch. The main 30m (P23,P8) shaft drops into a dried-up plunge pool from which a 3m climb up and a similar climb down lead via two 12m shafts into a roomy passage with a large population of bats. The passage closes down into a static canal with a capacity of about 100 cubic metres beyond which is the main streamway of the Kali Bribin. This runs for about 400m in a large passage and sumps in both directions. Survey, Figure 4. 83.
9. L.Kenteng. 621004. Depth 92m Dry canyon passage descending three shafts to head of P20; continues narrow. 82 (Fig.17)
10. L.Jomblang. 613032. Depth 92m Single vertical shaft to blockage of boulders. 82 (Fig.17)
11. L.Song Gupit. 609137. Single dry shaft of 56m with no way on.
12. L.Sumbring. 612148. Dry shaft with climb and P60 to mud floor.
15. L.Sumberejo. 612028. Entrance too small.
16. L.Blekonang. 607024. Depth 134m. Steep descent to a series of shafts becoming progressively smaller until progress is difficult beyond a depth of 134m. Dry. 82 (Fig.15).
17. L.Gesik. 602030. Shaft with strong draught, too narrow to enter.
18. L.Bentar. 598078. Depth 60m. Climbable shaft in hillside to P10 and large canyon passage to chamber blocked by mud floor. Dry.
20. L.Glesung. 587112. Depth 72m. Shaft into canyon descending to second shaft into dry mud-floored chamber.
22. L.Macanmati. 574111. Choked daylight shaft. P31 to vegetation covered floor, further climbs down to about 60m and choke. Dry. 83.
23. L.Nglibeng. 565067. Walled-up sinkhole with strong draught, needs removal of boulders to enter.
24. L.Kerwo. 574063. Depth 45m. P10 and P20 in rifts to dry choke.
27. L.Karang. 573051. No cave passage.

29. L.Soroiten. 543105. Depth 117m Length 352m. Short climbs lead to the head of a series of small pitches. At the end of the pitches is a canyon passage to a sump. Survey, Figure 5. 83.

30. L.Krinjing. 537108. Depth 60m. Blind valley to P55 to mud floor and small static sump 85m below plain level.

31. L.Gowah. 534108. Depth 170m. Boulder-strewn entrance passage to 70m shaft and further descents to impossibly narrow rift. Dry.

32. L.Tlogodadi. 526081. Large entrance and P25 to chamber floored with dry mud and boulders. 100m long inlet passage from north, also dry.

33. L.Setro. 524058. Depth 140m Length 250m. A succession of shafts in a large descending canyon passage to terminal sump with a minute flow. 82. (Fig.24)

34. L.Katok. 524049. Large sinkhole; long daylight rift climb to P5 and P15 to chamber with mud floor and static sump at depth of 55m. Adjacent dry shaft of 30m to mud floor undescended. Adjacent depression has 20m climb in dry rift to narrowing passage.

35. L.Jowa. 514048. Narrow rift with climbs to P12 into chamber with small static pool of no value. Second entrance in surface ravine leads to same chamber.

37. G.Lebak Bareng. 526085. Depth 166m. Length 166m. daylight gorge leads directly into a large entrance passage with dry mud floor. Shafts descend to a low level stream passage and sump. 82 (Fig.22)

38. L.Bamban. 528087. Large shaft descending in steps, not descended and almost certainly leads into Gua Lebak Bareng.

40. L.Mbibres. 512073. 8m shaft in hillside to dry chamber with mud floor.

41. L.Gelap. 613020. Depth 72m. 60m shaft to descending canyon to static sump.

42. L.Ngoro-or Ciut. 507073. Walled vertical sinkhole with dangerous walling for top 5m. P32 to descending rift, P39 into small pool. Rift continues beyond, becoming too tight after about 50m. 83.

43. L.Bawongan. 498073. Length 200m. Large entrance with climb and P20 into narrow twisting canyon which extends for 200m to southeast, and ends at 20m shaft. Continues narrow, with draught, and small amount of dripwater. 82.

44. G.Tritis. 449063. Stalagmite cave which attracts tourists. Choked. 83.

45. L.Gunung Betung. 607105. 60m blind shaft. Dry. 83.

46. L.Puring. 597107. 30m shaft and slope to dry mud floor.

47. L.Bawahan. 598097. Dry small shaft which fills to surface in wet season.

48. L.Buhputih. 644082. Depth 200m. Length 850m. A narrow rift passage at the base of a walled entrance descends steeply to a cross rift with small static sump pool. The cross rift opens out into the side of a 10m wide dry canyon passage. This ends in a series of shafts from the base of these a narrow passage with gours and pools leads off via another shaft to a canal which continues almost horizontally to a sump. 82 (Fig.14)
Plate 1. Main river passage in Gua Jomblang.

Plate 2. The entrance to Gua Ngowe-Owe.
Plate 3. Main river passage in Luwang Jurangjero.

Plate 4. Roof pendants and canal before river passage, Luwang Jurangjero.
Plate 5. Passage at the base of the shafts, Luwang Jurangjero.

Plate 6. Mas Sudiyono on Pitch 1, Luwang Ceblok.

Plate 7. Water-carrier and son at the entrance to Luwang Cikal (Site 225).
49. L.Sindon. 640112. Depth 88m Length 85m. A large entrance leads to a 36m pitch to a small static pool, followed by a 16m pitch and a 6m pitch into another drip-fed pool. Beyond this an 11m shaft and short climb lead to a short section of what is presumed to be the Kali Bribin between two sumps, downstream of the Gua Bribin. The stream passage is 5m or more in width and the stream varies considerably in depth. Survey, Figure 6. 83.

50. L.Ledok. 634103. P12 and P5 to into a clear-washed, dry, draughting canyon passage, this is too narrow downstream and is choked upstream, beneath the valley floor.

51. L.Tong Pocot. 631101. Depth 142m. Length 900m. A steeply descending series of small passages leads via ten shafts to a stream passage which can be followed westwards. Two small pitches drop down to a lower level which sumps after two hundred metres. 82 (Fig.25)

52. L.Ledok. 738101. A small entrance leads into a small passage which chokes. No draught. 83.

54. L.Jumbleng. 726035. 7m shaft to small dry chamber.

55. L.Gading. 754036. Depth 112m. Climb down to 68m shaft into canyon with a series of small pools fed by dripwater. A second shaft leads to a sump.

56. L.Sirik. 746043. Depth 65m. Shaft with P33 to short rift and static sump.

57. L.Sawah. 725078. 5m drop into dry chamber.

58. L.Sruput. 717079. Depth 65m. Fossil shaft near top of cone, with P40 onto boulder slope which descends to total blockage.

60. G.Kalen. 704090. Depth 39m. Length 150m. Low passage with tiny pools, to P29 and P7 into canals ending in boulder choke.

63. G.Semuluh. 644139. Depth 72m Length 1559m. The main entrance, south of the road, is formed where a small ravine intersects a major cave passage. Downstream a long narrow canal, with a wider dry passage at a higher level, extends to where the two levels meet and continues as a large tunnel carrying a small stream. Less than 100m further on the stream turns off the main tunnel into a narrow descending canyon passage, which ends in a sump 36m below the entrance. The main tunnel continues and, losing its elliptical cross section runs as a small vadose trench dropping down a series of climbs to an 8m shaft. At this point an inlet enters the passage. The water flows into a pool and from this to a 5m shaft with an inlet. This is followed by a series of small gour pools to a sump. Survey, Figure 7. 83.

64. L.Towati. 690070. Blocked sink.

65. L.Sumur. 693037. P40 to 100m of streamway to undescended narrow pitch.

69. L.Kluwangan. 692012. Blind dry shaft, 8m deep.

70. L.Glaragahumbo. 693001. Slope to 50m shaft, ending in dry mud choke.
71. L.Sirih. 680006. Two climbable rifts in a small depression, one with a small pool.

72. L.Pucang. 688994. Depth 100m. 70m shaf, to top of undescended P30.

73. L.Kenteng. 680092. Small blind hole.

74. L.Gondang. 682995. 7m climb into small blind chamber, dry but fills to surface in wet season.

75. L.Wates. 417118. P8, P15, P22 to choke. Dry. 83.

76. L.Soka. 416114. Depth 68m Length 135m. A series of short climb lead down to a pool. Beyond this is a 23m shaft into another pool. The cave continues down further climbs until the passage becomes too tight. Survey, Figure 8. 83.

77. L.Ngrau. 111118. 8m shaft to climb and 20m of canyon to choke. 83.

78. L.Ngledok. 390127. P8 to small chamber and descending boulder floored passage to sump. 83.

79. L.Ceme. 387129. Entrance through boulders leads into 30m of narrow rift ending in a mud choke. 83.

80. L.Bandung. 397128. Depth 92m Length 390m. A dual shaft entrance exists from adjacent depressions. A 27m pitch is followed by a short climb and a 7m shaft to a large passage which closes down into a small canyon. Two small inlets combine to form long muddy canals. A 12m shaft drops into the bottom of a large, unstable, steeply ascending passage. The water sinks in boulders. The cave terminates at the lower end in a blind 18m shaft; the upper section of the passage was not explored because of the danger of rock fall. Survey, Figure 9. 83.

82. L.Legundi. 376116. 15m pitch into large collapse doline floor. Second chamber has dry boulder floor.

83. L.Soga. 376108. Depth 177m Length 2428m. A small, strongly draughting, entrance in a depression at the edge of the village drops steeply via a series of shafts 9m, 4m, 32m, 14m, 10m, and 23m to a stream. This can be followed in a low passage upstream for about 200m to a sump. Downstream the passage opens up, after a short low section, into a narrow meandering canyon. This descends gently for about 600m to a 3m pitch into a pool. 100m below this point a major inlet enters from the west. This can be followed upstream for about 250m to a fork, both branches of which lead quickly to unclimbed waterfalls.

84. L.Bledok. 371110. Extended open rift, descended via P10,P3,P7, drops down to canyon which continues down becoming narrow. Continues. 83.

85. L.Ngrejek. 500098. Depth 51m Double shaft drops into large mud-floored chamber. Fills to surface in wet weather.

86. G.Ngowe-Owe. 496104. Depth 156m Length 349m. A large rift entrance, obvious from the road, leads to a 17m shaft. 100m of pleasant canyon passage ends at two short pitches and then a superb 91m shaft into a pool. A small outlet passage extends for 150m through gour pools and ducks to a sump. Survey, Figure 11. 83.

87. G.Ngegab. 492091. 40m of dry canyon passage with 8m shaft and ending in loose boulder choke.

88. L.Gondang. 499089. Depth 123m Length 263m. P21 and P8 lead to a roomy passage which becomes too tight upstream. Downstream it cuts a trench through a bed of volcanic tuff, forming a series of blind pits in the floor which become progressively deeper. Eventually the cave breaks through the tuff and descends a series of shafts into a small passage with static pools. This draughts strongly but becomes too tight. Survey, Figure 12. 83.
LUWANG SOGA
GUNONG SEWU CAVE SURVEY JAVA 1983
SITE 83 G.R.379108

PLAN

PROJECTED SECTION

Fig 10
89. L.Trecep. 486076. Depth 93m Length 93m. A small entrance through boulders opens onto a steeply descending rift. P46 followed by a series of short pitches and climbs leads to the limit of exploration at the head of an undescended P8. Mud on the walls suggests a sump within a short distance. Survey, Figure 13. 83.

90. G.Kenongo. 491070. Length 160m. Wide boulder-floored passage to narrow rift and pitch down onto fossil chamber, floored with mud. Dry.

92. L.Klepu. 490053. Boulder slope down to large passage choked with dry mud.

93. L.Jomblang. 476057. 23m shaft and climb down to dry mud-floor.

95. L.Klumpit. 440053. 15m pitch to mud choke in dry rift.

96. G.Klumpit. 439049. 20m shaft ending in choke of dry mud.

97. L.Banteng. 432058. Depth 75m. A broken 54m entrance shaft leads to a steeply descending passage to a sump.

98. L.Karang. 501047. Depth 94m. Length 325m. A 44m daylight shaft into a narrow, twisting, gently descending canyon passage terminating in a sump.

99. L.Ombo. (L.Tlempek) 505041. Depth 50m. 35m rope pitch to boulder choke. 83.

100. L.Kuang. 435074. Sinkhole, too narrow to enter.

101. G.Jurug. 583137. Passage, too tight to enter. 83.

102. G.Glendu. 591139. Easy passage leads to a pool, beyond which is a large bat-roost and a muddy canyon passage to a sump.

103. L.Kebo. 580130. Choked sink. 83.

104. L.Bedesan. 574124. Meandering canyon leads via short climbs and pitches to an 8m wide river passage which sumps upstream. Downstream a spectacular series of gours and cascades descend to a sump, where a small tributary can be followed to a small sump. From the base of the third cascade a high level passage may be entered and followed in one direction to a choke, in the other direction it may be followed upstream through a duck to an unclimbed waterfall pitch.

105. L.Gedilan. 576126. Depth 34m Length 89m. The descent of the vegetated, terraced depression south of the village leads to a small archway. Beyond this a large passage opens out but ends in a mud-filled choke after 50m. 9m within the entrance a small stream can be just seen, running in boulders. Survey, Figure 14. 83.

106. L.Jero. 612088. Depth 151m. 78m daylight shaft to a canyon and second shaft into a chamber with bats. Boulder slope ends in a small sump pool. 82 (Fig.20)

107. L.Pendul. 602078. Depth 45m. Climbs over loose boulders in tall meandering fossil canyon with dry mud floor, becoming too narrow.

108. L.Wuluh. 623063. P8 down to ledge with an excess of dead animals, and 25m shaft into a large dry, choked rift.

109. L.Ngepoh. 630053. A walled entrance slope drops into a passage which narrows to head of broken 60m shaft. Below this a further 100m broken pitch with spray and dangerous rocks. The cave continues down an undescended P30. 82 (Fig.21)
110. L.Toar. 623045. Entrance over boulders to 15m climb down in canyon to head of undescended P20 to dry floor. Fills to surface in wet season.

111. L.Besole. 628033. Depth 70m. Single large dry shaft to boulder floor.

112. L.Puleirang. 596034. Depth 196m. Since 1982 a concrete dam built against the cliff face almost rings the entrance; it is part of a scheme to create a new telaga in the basin formerly drained by the sinkhole. Unfortunately subsequent sinks have opened in the floor of the telaga, draining into the underlying cave. Remedial action has been taken but it is not yet known if this has been successful. The cave descends by a series of shafts to a sump at -196m fed by a very small inlet. Survey, Figure 15. 83.

113. L.Mundu. 628029. Depth 62m. P10, P38 and P8 lead into a small canyon passage ending in a static sump.

114. L.Ledok. 624038. Two adjacent sinkholes. One is P10 into complex of dry canyons in loose and sharp rock, not completely descended. Second has P15 to short passage and dry mud-choke.

115. L.Gebang. 636045. Walled slope to climb and P10 to top of P25, not descended due to a vast amount of loose rock. The whole cave is dry.

116. G.Penangson. 662158. Two sinkholes, both leading directly to small sumps. Used as emergency supplies in the past, but not now due to nearby borehole. In Plateau facies.

117. L.Kongkang. (L.Ngringjing.) 692124. P41 leads to level floor with low crawl to head of undescended narrow shaft with take-off through loose boulders. 83.

118. L.Grigak. 700108. Blocked sink. 83.

119. L.Jalak Bromo. 684066. Depth 147m Length 250m. P16,P12,P8,P8,P41,P16,P14 to a pool. The passage continues as a low, wet bedding plane. Survey, Figure 16. 83.

120. L.Nglampeng. 595085. A small entrance drops down a climb to a short passage to head of a P13, followed by a P9 into a large passage which becomes too tight in both directions. 83.

121. L.Purang. 727085. 3m entrance climb followed by a P4 into a blind chamber. 83.

122. L.Jambu. 723088. Blocked sink. 83.

126. L.Gedawung. 588125. Shaft, unvisited.

128. L.Blerong. 369142. Length 120m. An entrance in the floor of a rocky doline leads through a small chamber to a descending passage. Steep flowstone steps continue down into a chamber with a roof inlet, and downstream the water flows into a low and unpleasant bedding plane passage.

129. L.Sentul. 456040. A climb down a walled entrance leads to a meandering dry canyon passage with a series of drops which ends in a 4m deep sump pool 51m below the entrance.

130. L.Tjabe. 591062. Blocked sinkhole.

131. L.Bandung Sumuran. 492120. 40m shaft and climbs to choke, not visited.

132. -
133. G. Sodong. 762112. Depth 46m. Length 4290m. A fine dendritic cave with three major branches. An inlet inside the entrance is heavily used and pools beyond are badly polluted. Beyond these the passage becomes more pleasant as a high tunnel broken by two short handline pitches and long canals. The main stream passage is almost two kilometres long, a high canyon with a sizeable stream. The water issues form a top sump and eventually feeds a terminal sump from where it has been dye-traced to Pracimantoro, two kilometres away. The northern tributary is a long inlet, half of which is a long meandering canyon with deep water. In its upper reaches its morphology becomes more complex and contains spectacular displays of white calcite. 82 (Fig.29)

134. G. Songgilap. 755101. Large entrance and descent over boulders to short dry passage to sediment choke.

136. L. Buh Kidul. 728032. 8m climb to small dry chamber.

137. L. Gandek. 728031. Depth 138m. Two deep shafts end in a bedding plane passage which continues low and contains shallow pools of standing water. 82 (Fig.16)

138. L. Jurug Watu. 575036. Shaft, 5m deep, too narrow for descent.

139. L. Ngirowari. 578036. 40m shaft ending in a dry rift.

140. L. Gupakwarak. 528018. Small dry hole 10m deep.

141. L. Blubug. 573070. Small dry cave with 5m climb to terminal choke.

142. L. Tirisan. 596074. Shaft and boulder slope climb to dry mud choke at depth of 35m.

143. L. Mojing. 603063. Climb down to P10 and further climb to dry choke of mud and boulders at depth of 25m.

144. L. Branjung 1. 588032. Dry rift 25m deep floored with mud and boulders.

145. L. Branjung 2. 588032. 20m shaft to canyon, dry and descending to where it is too narrow at depth of 40m.

146. L. Bete. 778091. 16m bellshaft and second dry chamber ending at depth of 28m.

147. L. Gadjah. 778089. Doline with perennial pool used for supply. No cave except for adjacent 3m deep dry shaft.

148. S. Sodong. 359129. 10m of low muddy canal between upstream and downstream sumps.

149. S. Sungei Besar. 358135. Large entrance blocked by choke.

150. S. Ngerenean. 462023. Large spring on foreshore very close to low tide level.

151. L. Puniran. 628110. Depth 118m. Steeply descending succession of shafts, leading to a 20m undescended shaft down to a pool which appears to be a sump. 82 (Fig.23)

152. L. Kamal. 533133. Depth 106m Length 212m. A large ravine in a depression below the village ends at a 10m shaft. At the base of this is a short climb to the head of a 16m shaft into a large boulder-floored chamber. A 14m shaft leads to the head of a larger shaft broken into a 47m pitch and a 9m pitch. At the base of this is a large passage which drops into sump pools at both its southerly and northerly ends. Survey, Figure 17. 83.

153. L. Towati. 527115. Depth 111m Length 564m. A clean and pleasant entrance passage leads via climbs and short pitches to the head of a 32m shaft. At the base of this is a pool fed by drips from above. Wading across this pool leads into a passage which descends gradually, increasing in size and collecting several small inlets. The passage becomes progressively more muddy and unpleasant and eventually inter-
sects a large passage in which a small and highly polluted stream meanders between huge mud banks containing much unpleasant flood debris. Downstream the stream flows at about 1.5 litres per second into a sump. Upstream the stream emanates from a sump at the base of a massive sediment bank which rises towards the roof. The entire passage floods to the roof in the wet season. Survey, Figure 18. 83.

159. L.Bendo. 657138. P5 and climb to very low dry bedding plane passage.
160. L.Leuh. 677130. Large entrance leads to descending canyon, dry and in very sharp rock, which becomes very narrow after 100m but does continue.
161. L.Sapen. 763108. Length 250m. P36 into small streamway with a sump in both directions.
162. G.Kajubang. 422076. Dry fossil passage into collapsed and blocked chamber
163. L.Pringwulong. 432084. Shafts of 8m and 35m ending in narrow dry rift.
164. L.Ngampil. 458056. 25m shaft to rift ending in choke. Dry.
165. G.Telogo Teki. 438103. Large overhanging entrance to mud filled passage, chokes after 20m. 83.
166. G.Ngreneng. 635130. Large doline with choked passages and flooded rift.
167. G.Toto. 619139. Length 925m. Large passage leads to streamway. Upstream to the north alternating canals and breakdown chambers to a boulder choke. Downstream canals leads to a terminal sump.
168. G.Kedokan. Depth 22m. Length 70m. Descending passage to a sump. A dry high-level passage ascends above the pool but requires aid.
169. G.Jombang. 733158. Depth 134m Length 3326m. A long entrance ramp, with a flight of steps and excavated into bedrock, leads into the main entrance chamber. The steps continue into the smaller supply pool chamber, which is out of daylight. A low muddy passage with static pools can be followed past a high level chamber, to a larger passage with mud and standing water, ponded by breakdown and sediment. An inlet enters as a 0.9m high waterfall, fed from a perched sump to the north. Downstream the water leaves the main passage over a rock lip and drops quickly to a sump pool. Flood flows continue in the upper passage, from which the streamway is re-entered through a short maze complex. The stream passage continues low and sharp with shallow pools and gours until it drops down into a tight sump. Beyond this a dry continuation leads to the head of an 8m pitch into a large chamber. A 14m pitch, starting in loose boulders, drops into a large, well decorated and steeply descending passage which is blocked by stalagmite. A climb down under a boulder on the right leads to the head of a 9m pitch which is immediately followed by a 13m pitch.

At the base of this pitch a further 11m pitch drops into a narrow canyon containing a small stream. Upstream this leads immediately to a waterfall. Downstream the passage continues down climbs to an impressive river passage containing the Kali Bribin. Opposite the junction is a small inlet which can be followed up for about 50m to its source amongst boulders. Downstream leads to a sump after about 100m. Upstream in the main passage the river can be followed for about 350m to another sump. Midway between the junction and the upstream sump is an inlet passage containing a small stream running between sediment banks and rising from a sump after about 150m.

At the head of the final pitch a high level traverse may be followed to the top of the waterfall. The stream appears from a further, unclimbed, waterfall but a phreatic tube leads off due south. This tube,
Fig. 19.
GUA JOMBLANG
GUNUNG SEWU CAVE SURVEY
JAVA 1982 and 1983
SITE 169 G.R. 733168
BCRA Survey Grade 5b

PROJECTED SECTION ON 000

ENTRANCE SERIES PROJECTED ON 090

PLAN

No. 2 Inlet
No. 1 Inlet
Easter Egg Passage, is floored with superb mud cracks and after 200m drops into a canyon passage with a small stream. Upstream of this point the pleasant, meandering passage terminates in an unclimbed waterfall after about 550m. Downstream, after 150m, it runs into another stream. This second tributary can be followed up a roomy meandering canyon with occasional breakdown for about 700m to two unclimbed waterfalls. Downstream of the junction the canyon continues as easy walking passage for about 120m to a junction with the main river passage. 150m downstream of this point is a sump. The flow at this point was estimated as c.0.5 cubic metres per second. The same distance upstream is the downstream side of the previous terminal sump. Survey, Figure 19. 83.

170. G.Ngringong (Mulo). 549126. Depth 74m. Length 380m. Large entrance leads to a passage with shallow pools. Water cascades down three drops, interspersed by deep, wide pools. The stream is lost in boulders but reappears to flow into a sump.

171. L.Ngiratan. 638058. Depth 168m. Length 168m. 28m broken shaft leads to a narrow canyon with small static pools. A tight passage follows to the head of a 106m shaft into a large pool. An 8m drop gives access to a series of gours and pools and lead to a sump.

172. L.Sumela. 639065. Depth 43m. 32m shaft to a short rift with a floor of boulders and mud. 10m further, over breakdown, a small stream flows from a shallow pool and continues unexplored.

174. G.Tritis. 537072. P15 into rift, climb up 4m, P8, P5, P3 to head of very tight undescended pitch. Draughts. 83.

175. L.Jomblang. 625011. Depth 125m. 1982 Cave Survey found a 77m entrance shaft with small fetid pools on floor. This lead to a canyon passage ending at an unclimbed 20m shaft into a much larger passage which continued into darkness. The 1983 Cave Survey found that a major collapse and subsidence had completely blocked the access to the second pitch. 82 (Fig.23)/83.

176. G.Buri Omah. 597142. Depth 33m. Length 570m. A series of climbs can be descended to a major underground river passage. Upstream this can be followed through an impressive break-out dome to a sump pool. Downstream a substantial tributary joins the passage before the terminal sump. 82 (Fig.7)

177. L.Ngelo. 625037. Slope into narrow dry canyon in sharp rock.

178. L.Bohol. 716018. Depth 57m. Length 175m. Daylight shaft and series of climbs to gently graded passage continuing in bedding plane.

179. L.Daren. 742998. Depth 122m. Length 240m. Large daylight shaft descends almost 100m to dry canyon passage which leads to 12m shaft into short stream passage between sumps. 82 (Fig.13)

180. G.Bribin. 647117. Depth 33m. Length 3900m. Dry entrance passage descends to its junction with the underground river, the kali Bribin, which can be followed downstream for 1200m to a sump. Upstream the river passage can be followed through a deep lake for 1000m to a sump after a further 300m. A major side passage continues to the north from just before the sump. 82 (Fig.26)

181. G.Sodong (Dadapayu). 681092. An entrance canyon extends 200m to a supply pool. The way on is normally blocked by a short sump but in low water this can be passed into a passage 5m in diameter which can be followed for almost 2km to a terminal sump. 82 (Fig.28)

182. G.Gilap. 729192. Depth 71m. Length 1090m. A massive cave entrance in the side of large collapse feature continues down a rubble cone, becoming constricted, an enters the roof of a stream passage. Upstream this leads through a large chamber to a sump. Downstream sumps immediately. A higher level tunnel is unexplored beyond a 15m drop. 82 (Fig.27)

183. L.Serpeng 1. 559128. Depth 85m. Large shaft with 60m pitch down loose walls to boulder slope descending into large passage with many bats. Ends in a sump pool with no visible flow. 143
184. L. Serpeng 2. 557127. 50m entrance shaft drops into large cave passage. Downstream this continues to drop steeply over rock steps and large boulder piles until it breaks out into a chamber which is floored entirely by a lake. 82 (Fig.12)

185. S. Silli. 564995. A large entrance rapidly closes down into a low passage over flowstone giving access to a 20m long pool floored by mud and boulders.

186. S. Sundak. 567994. A double entrance gives direct access to a deep static pool with no further passage.

187. S. Baron. 500016. Length 150m. A short section of river cave with extensive breakdown ends in an

188. S. Ngobaran. 453026. A steep descent leads to the floor of a chamber 30m in diameter and nearly 15m high. The stream flows across the floor with sump pools in either direction.

189. G. Song Tawing. 603122. Depth 76m. Length 355m. A wide entrance passage ends in a 30m high wall of sediment below a skylight. A rift passage leads down to a shallow pool. This can be passed to two further pools and beyond to a 10m wide muddy chamber. A small stream flows in a narrow passage to the head of an undescended 7m shaft.

190. L. Grubug. 600127. Depth 161m. Length 2290m. A 64m pitch onto a rubble cone and a descent of 25m to the edge of a river crosssion the floor of a large chamber. From here three passages lead off. Southeast a dry fossil tunnel inhabited by bats leads to the floor of the broken 40m Jomblang pitch. Northwest, the upstream river passage extends for nearly 800m to a sump via lakes and canals of slow moving water. Southwest the downstream passage is a large descending canyon with waterfalls and whirlpools leading to the terminal sump. 82 (Fig.7)

191. L. Kenteng. 731067. Sinkhole with loose dangerous boulders which need excavation before descent.

192. L. Gunong Bulong. 595316. 70m shaft, unvisited.

194. L. Pengangson. 377075. Depth 46m. 3 shafts descend steeply to a pool from which a low bedding passage leads off full of water.

195. L. Glagah. 377087. Depth 48m. Length 150m. Daylight shaft to boulder floor with narrow descending rift continuing into hill. Second shaft drops into stream passage which contains only small pools with negligible flow and ends in a sump.

196. L. Watukebo. (L. Macanmati) 395107. Depth 40m Length 186m. An entrance boulder slope descends to the lip of a shaft which drops straight into a pool at a depth of 20m. Downstream of the pool, a passage with further very shallow pools extends over the top of an 8m shaft. Below this a small meandering canyon passage leads to a small chamber with an inlet beyond which the passage becomes too low. Just above the 8m shaft an old bamboo ladder reaches down an aven; no surface access is known and it is thought that this ladder is reached via a traverse above the entrance pool. Survey, Figure 20. 83.

197. L. Seropan. 577118. Depth 65m. Length 650m. A broken entrance shaft 38m deep leads to a high canyon. A low muddy passage through static pools leads into an 8m wide conduit, which can be followed downstream to a ponded sump. The upstream passage leads through low ducks to a deep sump pool. A tributary enters from the south. 82 (Fig.8)

198. L. Besole. 378081. Dry rift descended in stepped pitches of 5, 10, 12, and 12m to where it continues very narrow. Adjacent shaft is 15m deep and blocked.

199. S. Pondjong. 684178. Major resurgence with no enterable cave.

200. L. Jati. 715133. Depth 94m Length 330m P55 and P38 to a boulder floor. Mud climbs and traverses lead up into large mud-floored passage with many decaying stalagmite; choked in both directions. Survey, Figure 21. 83.

201. S. Pracimantoro. 787097. Major resurgence with no enterable cave.
LUWANG PONGKOK
GUNONG SEWU CAVE SURVEY JAVA 1983
SITE 228 G.R.585136
EXTENDED SECTION

Fig 28

LUWANG SONGJEMBAL
GUNONG SEWU CAVE SURVEY
JAVA 1983
SITE 229 G.R.707124
BCRA Survey Grade 5b
EXTENDED SECTION

Fig 29

146

203. S.Piyuyon. 773946. Major resurgence in intertidal zone. The only cave passage sumps 5m from entrance.

204. G.Bendunan. 697095. Depth 37m Length 229m. An entrance passage with pools leads to a small chamber from which a canal leads to a second chamber and, via a squeeze, to a third chamber. A small stream drops into a tight slot, down a 25m shaft and sinks. An unpleasant muddy passage with rotten stal and shallow water leads off and becomes too tight. The main passage continues over the slot beyond the third chamber but is greasy and contains much rotten stal; it was not followed. Survey, Figure 22. 83.

205. Unnamed. 623022. Choked sink. 83

206. L.Kambil Ketil. 350119. Short passage leads to climb down into streamway. Upstream sumps after 3m, downstream continues growing larger but is blocked by flowstone. A low duck continues with no draught but sound of water beyond. Likely to resurge in S.Cacahan, Site 253. 83.

207. L.Wediwutoh. 637137. Dry canyon passage descends to terminal mud choke at depth of 35m.

208. L.Jurang. 634132. Boulder-floored passage descends steeply to small static pool at depth of 20m.

209. G.Suci. 601147. Length 260m. The Kali Suci goes underground at the end of an impressive blind valley incised on the edge of the Wonosari Plateau. The large cave passage has a gentle gradient and crosses the floor of two large dolines, Luwang Songlat and L.Gelong, before a final short passage ending in a deep sump pool. 82 (Fig.7)

210. Unnamed. 587142. Wet season sink on north of road with any cave entrance currently blocked. Second dry depression south of road also has no open cave.

211. Unnamed. 574140. Wet season sink in depression with no open cave entrance

212. Unnamed. 219182. Depth 74m Length 95m. C9,P24,P8,P15 to sump. Survey, Figure 23. 83.

213. L.Suru. 587119. P23,P22,P7 to flooded rift, short passage beyond to static sump. The entrance shaft apparently fills to the surface in the wet season. Survey, Figure 24. 83.

214. G.Song Dangal. 594119. Very large cave entrance at end of blind valley, with passage shrinking to dry mud choke after 100m.

215. Unnamed. 595111. 22m shaft to dry mud floor.

216. G.Serpeng. 562127. Perennial river sink at end of blind gorge. Large cave entrance with considerable bat colony has slope of mud and guano descending to large sump pool of foul water only just out of daylight.

217. L.Banteng. 522122. Distributary of Kali Tegoan which sinks into boulders below cliff. A canyon leads to a P27 into a large chamber from which a large passage leads off to a junction. Upstream approximately 400m of passage leads to a chamber; downstream a terminal sump is reached after about 300m. (Quinif and Dupuis, 1984)

218. G.Sumurup. 519120. Depth 58m. Length 1435m. Beyond the entrance the passage contains a series of almost static pools and drops down a 24m shaft into a small deep lake beyond which opens the spacious Mud Hall. The continuing passage is nearly horizontal with a few pools and extensive mud coatings on the wall. Two inlets join the passage before the terminal sump. 82 (Fig.11)

219. G. Si Karangmiri. 507131. A large gently descending canyon leads to a sump after about 600m. (Quinif and Dupuis, 1984)

220. G.Grengseng. 536060. Fossil cave chambers with an abundance of stalagmite in about 100m of passages.

221. L.Batangan. 512060. P30 and short climb into 30m of passage which becomes too tight. 83.
222. L.Jero. 499063. Depth 163m Length 140m P15,P44,P50,P31 to a sump. A small inlet passage continues tight. Survey, Figure 25. 83.

223. L.Sapi. 458042. Small entrance with climb into small, blind chamber. 83.

224. L.Kapul. 445129. P16 down walled shaft into meandering canyon. After 50m a P6 drops into small chamber beyond which the canyon continues very narrow. 83.

225. L.Cikal. 418134. Depth 7m Length 92m. A small entrance leads into a 5mx3m tube with mud and soot covered walls ending in a terminal sump pool. In dry weather the sump lowers to allow access to about 25m of passage and a further sump. Survey, Figure 26. 83.

226. L.Gondosore 1. 412129. An open 12m shaft drops directly into a pool 8m in diameter and at least 3m deep. 83.

L.Gondosore 2. 413129. Descending rift in side of depression. A boulder slope can be descended for 8m to a passage and a small chamber which is mud choked. Floods to 1.5m above the depression floor in the wet season. 83.

L.Gondosore 3. 410129. Hole under boulders in a vegetated depression leads to the head of P12 into a canyon which ends in mud and calcite choke after 50m. 83.

227. L.Gebang. 372152. Depth 20m Length 200m. Well made steps lead down into the cave where the upstream flow has been dammed and ponded to improve storage capacity and facilitate abstraction. Downstream the passage continues low and badly polluted. A short section of walking passage leads to a sump. Survey, Figure 27. 83.

228. L.Pongkok. 585136. Length 79m. P7 and short climb lead into a canyon passage which rapidly closes down. Survey, Figure 28. 83.

229. L.Songjembul. 707124. Depth 90m Length 331m. A short climb leads to a 34m shaft and further short climbs to a percolation fed pool. Beyond this a series of short shafts and horizontal passage lead to a terminal sump. Survey, Figure 29. 83.

230. G.Triris. 567057. Large blocked cave entrance.

231. G.Brankong. 536017. Small cave entrance to pool with the remains of a pump system, now redundant.

232. G.Tepus. 761113. Dry fossil cave open to tourists.

236. S.Beton. 796118. No cave passage.

237. -

239. S.Puring. 682966. Cave passage becomes too narrow.

240. S.Sambiroto. 797088. Large perennial resurgence with flow of about 10 cubic metres per second. 83.

242. S.Sulu. 711189. A small hole in the base of a depression behind concrete storage tanks leads to a body sized hole which drops 3m into a pool. A passage continues underwater eastwards. 83
243. S. Ngremmeng. 693219. A small stream, used for irrigation and water supply, emerges from the mouth of a cave approximately 4m x 3m. This cave passes entirely through the hill but was not explored. 83.

244. S. Karangmojo. 473173. Pool in the side of a stream. 83.

245. S. Umbuldengkok. 550149. Small spring adjacent to the stream, water sinks immediately. Nearby is a well sunk into the bed of the stream. 83.

246. S. Penuh. 502154. Well, with a capacity of about 24 cubic metres. Extensively used as a supply. 83.

247. L. Butuing. 756055. Depth 138m Length 180m. P117 into chamber with short passage leading to P8. Passage continues low. Survey, Figure 30. 83.

248. L. Ngerong. 718114. Collapse feature with several ways in and down through the margin of the boulders. 83.

249. L. Ombo. 694129. Blind 78m shaft to boulder floor. 83.

250. Unnamed. 735150. Large collapse feature. 20m pitch to boulder floor with trees, no cave passage. 83.

251. Unnamed. 733144. Sink. Takes considerable water in wet season. Small passage 0.5m x 0.4m unexplored. 83.

252. L. Celeng. 723092. Small cave ends after 8m under skylight. 83.

254. L. Danggalo. 392135. Entrance climb with bamboo ladder to small chamber and short drop into dried pool. Small passage continues beyond for 40m until too tight. 83.

255. L. Wotawati. 442126. Depth 65m Length 188m. P17, P7, P6 followed by a descending passage to an undescended P16 into a pool. Survey, Figure 31. 83.

256. L. Buriomah. 427120. Depth 110m Length 211m. An impressive rock arch provides the entrance to a descending passage with short climbs and P9, P5, and P9 into a low meandering passage with a small stream. This leads to the head of a P52 from the bottom of which there is no way on. Survey, Figure 32. 83.

257. L. Bopo. 505045. Large collapse with P15 to vegetated boulder floor. 83.

258. L. Kentu. 83.

259. Unnamed. 648132. Choked sink. 83.

260. Unnamed. 644138. P17, P5 to choke. 83.

261. S. Plalor. Resurgence cave which passes completely through the hill. Water comes from S. Sawar, Site 262, and flows down the valley to feed S. Ngremmeng, Site 243. Unexplored. 83.

262. S. Sawar. Resurgence cave which apparently passes completely through the hill. Water flows down the valley to feed S. Plalor. Unexplored. 83.

263. L. Langkap. 621022. Small climbable walled shaft into narrow rift, continues descending. 83.

POTENTIAL FOR FURTHER EXPLORATION

The work carried out in 1983 more or less completed the exploration of the known sites of speleological interest in west G. Sewu, although a careful reading of the above descriptions will reveal a small number of sites where further discoveries may be made. The dense population of Sewu makes it unlikely that any significant number of unknown sites remain to be visited.
A brief reconnaissance was made to east of Pracimantoro where there is a large area of karst awaiting exploration. The road network in this area is less well developed than in west Sewu and there is considerably more tree cover. A number of sites of potential interest were noted, however, amongst which were a large entrance with cave passage at Sumberagung (782007); L.Saban (787989); G.Calianyar (795988); and the resurgance cave at Kali Maron. This area would undoubtedly repay further investigation. In addition there are a number of unexplored river caves in the north-eastern margin of the cone karst and the area in the vicinity of Site 261, S.Palalor, would merit some investigation.

Cave exploration in Java is coordinated by the national body, now named FINSPEC, The Federation of Indonesian Speleologists, who may be contacted via their Chairman, Dr.R.Ko, P.O.Box 55, Bogor, Java, Indonesia. Any foreign groups contemplating a visit to Indonesia would be well advised to work as closely as possible with FINSPEC in order to obtain the benefits of local advice and cooperation and to support the development of caving in Indonesia.

CAVE BIOLOGY

Small, apparently cave adapted fish were observed in the entrance stream to G.Jomblang (Site 169). Several specimens were caught and brought back to the UK where they have been examined by Dr.K.E.Banister of the British Museum (Natural History). They have been identified as Barbus microps (Gunthor, 1868) which is "quite widespread". (Proudlove, pers.comm. 1984). At least one of the specimens shows evidence of reduced eyes and specimens from caves elsewhere have been observed to show similar features. Since there is no permanent surface water in the vicinity of G.Jomblang it is possible that the population of B. microps in the cave may be an incipient cave fish although further information is required to substantiate this. Unfortunately the experimental practice of stocking Sewu telagas with high-yield fresh-water species in order to generate a crop of fish during the wet season may make this impossible. There is a temporary telaga very close to the cave and introduced species might well reach the cave and swamp the population of B. microps.

Specimens of fresh water shrimps were collected in 1982 from L.Tong Pocot (Site 51) and G. Sodong (Mudal) (Site 133) and in 1983 from L. Jurangjero (Site 8). These have been examined by Dr.L.B.Hulthuis of the Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands, and are a new species Macrobrachium poeti (Crustacea Decapoda, Natantia). (Proudlove, pers.comm. 1984). The type specimens have been retained by Dr.Hulthuis.

ACKNOWLEDGEMENTS

The authors are grateful to the members of FINSPEC, in particular Dr.R.Ko, for their superb hospitality and assistance; to Soedigdo W. and the staff of P2AT at Yogyakarta and Wonosari for their assistance, support and facilities; to the staff of Sir M.Macdonald and Partners, Civil Engineers, for their practical support and generous hospitality; to our interpreter and excellent caving partner Mas Sudiyono, our driver Mas Sunarto, and our cook Sumiati, without whose help our stay in Wonosari would have been far less comfortable and much less productive. We are grateful for the financial support of the Ghar Parau Foundation and the Sports Council. The members of the 1982 G.Sewu Cave Survey team provided us with our motivation and background information and infected us with their enthusiasm for the area. Finally, and in common with the 1982 team, we would like to express our gratitude to the people of Gunung Sewu whose charm and boundless hospitality made our work a pleasure.
REFERENCES

R.G.Willis, 56 Granby Hill, Clifton, Bristol, BS8 4LS.
C.Boothroyd, 63 Blades Street, Lancaster.
N.Briggs, 448 Stonegate Road, Leeds, LS17 5BG.
Caving is one of many sports where participants need to protect themselves against heat loss. This is usually done as a compromise whereby normal caving activity will generate enough heat to maintain thermal equilibrium in the body if clothing with adequate heat insulation properties is worn.

Thus any caver immobilized through injury or trapped by any cause can lose heat and deteriorate dressed in what would normally be adequate clothing unless extra measures are taken. Paul Ramsden has covered many techniques appropriate for this problem in an extremely practical way (this issue of Cave Science).

Cavers in the United Kingdom do not generally face the low temperatures and high wind chill cooling to which climbers are exposed but they may in some caving area, e.g. in the entrance to ice caves, and they can in England when leaving a cave in blizzard conditions and facing a walk to shelter particularly if soaked. For this latter extra windproof clothing left at the cave entrance for the walk out may be sensible and life saving. A wind chill chart is given in Fig.1.

Hypothermia is simply a fall in body temperature inevitable when heat loss exceeds heat production in any circumstances. It is defined as being present when the core or inner temperature is below $35^\circ C$ (normally $37^\circ C$). This is simply an arbitrary point on a continuum of deterioration and instead of being pedantic about the level of cooling achieved it is more relevant to decide if an individual is losing heat and if so to take appropriate measures. The symptoms of acute hypothermia are shown in Fig.2.

A core temperature of $35^\circ C$ also represents a stage where appreciable heat loss has occurred, where the sufferer is at risk, and where deterioration can be rapid.

Though the inner body (core) temperature may have fallen by just $2^\circ C$, the outer layers or skin will be appreciably below this level, considerable total heat loss having already occurred. Oliver Lloyd's classic paper of 1964 described two Mendip cavers dying in 1 and 1½ hours after showing the first features of hypothermia in flood conditions.

The level of hypothermia is classically defined as:

- Mild Core temperature $34^\circ C$ to $35^\circ C$
- Moderate Core temperature $30^\circ C$ to $34^\circ C$
- Severe Core temperature below $30^\circ C$

If labelling any caver mildly hypothermic as defined above were to give the impression that he is hardly at risk, it would be a profound error!

Differences exist between the clinical features and the management of those cooled rapidly, for example after immersion in cold water (known as acute hypothermia), and those cooled slowly, for example lying immobile down a dry cave (known as chronic hypothermia).

In practice cold cavers tend to fall between the two extremes with the likely added extra insults of exhaustion and mental stress. The "Exhaustion Exposure Syndrome" combining all of these can be highly lethal.

At risk are all immobilized particularly the thin, those inadequately clad, the young, the less experienced, the unfit, the recently ill and anyone hungry!

Non-sporting hypothermic victims are mainly the elderly, infants, those with suicidal intent and drunkards. The writer has seen more than one cold caver from the latter group due to collapsing outside after caving club Winter dinners! Beware and look after your less temperate colleagues at these functions.

How can hypothermia be detected? The victim may be completely unaware of any deterioration and lacking any subjective sensation of feeling cold particularly if exhaustion-exhaustion victims will have a detectable smell of ketones on their breath (resembling acetone, pear drops or nail varnish). This feature is easy to detect if the nose is placed near to the victim's mouth whilst he breathes out. Its presence is significant and puts victims at risk of rapid deterioration. However, many cavers with this feature have exited from caves unaided after being lost or trapped. Their attendants should be aware that they are at risk, should feed them, watch for deterioration and protect them carefully on even minor hazards.

Table:

- **Mild Core temperature**: $34^\circ C$ to $35^\circ C$
- **Moderate Core temperature**: $30^\circ C$ to $34^\circ C$
- **Severe Core temperature**: below $30^\circ C$

Fig. 1: Wind Chill Chart

Fig. 2: Symptoms of Acute Hypothermia
<table>
<thead>
<tr>
<th>ESTIMATED WIND SPEED IN M.P.H.</th>
<th>ACTUAL THERMOMETER READING (°F)</th>
<th>EQUIVALENT TEMPERATURE (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calm</td>
<td>50 40 30 20 10 0 -10 -20 -30 -40 -50 -60</td>
<td>50 40 30 20 10 0 -10 -20 -30 -40 -50 -60</td>
</tr>
<tr>
<td>5</td>
<td>48 37 27 16 6 -5 -15 -26 -36 -47 -57 -68</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40 28 16 4 -9 -21 -33 -46 -58 -70 -83 -95</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>32 18 4 -10 -25 -39 -53 -67 -82 -96 -110 -124</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>30 16 0 -15 -29 -44 -59 -74 -88 -104 -118 -133</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>27 11 -4 -20 -35 -49 -67 -82 -98 -113 -129 -145</td>
<td></td>
</tr>
</tbody>
</table>

(wind speeds greater than 40m.p.h. have little additional effect)

<table>
<thead>
<tr>
<th>LITTLE DANGER (for properly clothed person)</th>
<th>Increasing DANGER</th>
<th>GREAT DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger from freezing of exposed flesh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1. WIND CHILL CHART

Fig.2. SYMPTOMS OF ACUTE HYPOTHERMIA
English hill climbers have been taught for many years that when exposure develops it is safer to seek shelter, change to dry clothing and rest than to continue walking. If rescue does not arrive then after rewarming and nourishment victims can continue walking with more safety. All of this presumes that dry clothing, food and some shelter are available. This good advice must have saved many but may have been overdone at times, particularly if just a few minutes walking could allow several hundred feet of descent and much improved weather conditions and chance of rescue. The most extreme example was that of a lone slightly cooled Yorkshire teenager who lay in his sleeping bag for five days within a couple of miles of a road whilst several hundred rescuers searched for him.

We have described how British cavers are spoiled by readily available rescue services and are losing the tradition of self rescue of an earlier generation.

The most important aspect of exposure for cavers is to be alert for the development of the features listed and be aware of their significance. What to do next is more problematical and will depend on the competence and equipment of the party and the remoteness of the situation.

Many victims with mild symptoms can be adequately handled with rest, insulation, feeding and an assisted exit. On expedition caving nothing else may be available.

Above a certain degree of cooling, exercise will be beneficial and due to heat generated totally curative. Below this level when cooler blood is pooled and static in the body shell (principally the skin and muscles) then forcing exercise on victims will merely divert the coolest blood from shell to core with undesirable results and by opening up the shut-down peripheral circulation actually increase heat loss from the skin. The core temperature below which exercise is detrimental, based on experimental work, is around 35°C i.e. the onset of mild hypothermia as previously defined.

All of this theory supposes that the victim is not too exhausted to cope with further exercise which may certainly not be the case with caving victims. With exhaustion, forced exercise may be rapidly detrimental.

How does one judge the best course of action with a cold caver where rescue is not near to hand and prolonging evacuation may put others at risk? How should British rescue teams, who frequently meet this problem, handle victims who have been trapped or lost and who have become cooled to some degree? With multiple victims stretcher carriers for all will tax rescue resources and are likely to be impractical in the far reaches of some caves.

The arrival of help will boost morale, which is so important and can offer warm drinks and food which is universally beneficial. Much will depend on the ingenuity of those trapped while waiting for rescue and their foresight in using adequate insulating clothing and carrying exposure bags.

Fortunately most trapped cavers after a bite of food are only too eager to get out of the cave themselves and often outpace the rescue team. Those in or approaching coma will need carrying out after insulating.

How should the borderline case be dealt with? Measuring rectal temperatures underground is an impractical means of arbitrating. The best guide is probably the level of consciousness as shown by the clarity of thought. If the victim is rational, speaking clearly and not unco-ordinated in his movements he (or she throughout) is probably fit to climb out from his cave, warming up thereby. He will still need carefully protected from any hazard.

If he is confused in orientation or speech and moves with a staggering or excessively clumsy gait he is probably too cold to have exercise forced upon him. In this case he should be rested, insulated, fed and allowed to rewarm which will happen spontaneously from his on-going body metabolism if insulation is adequate.

All of this theory supposes that the victim is not too exhausted to cope with further evacuation is desirable or other grounds (which is usually the case), then it would seem reasonable to perhaps provide extra clothing and then let him attempt to move out by his own efforts. He should however be protected obsessively and watched meticulously. If he shows signs of deteriorating then this decision must be reversed. He must be rested, insulated, and a stretcher evacuation considered. Only too much victims have needed a stretcher evacuation after first attempting to walk out - one because of recent influenza and the other due to having been given excessive strong pain-killing drugs. Both survived.

The best practical methods of providing insulation is open to debate and will vary with the problems likely during rescue. The optimal way would be to remove all wet clothing and place him in a dry sleeping bag with a warm rescuer (Yes we all share a fantasy that one day the victim will be a pretty girl and it will be our turn in the bag - but this never seems to happen).

If a caver is in a wet suit or fibre pile suit them most teams would not undress him as these garments retain their insulating properties when wet and more benefit it is to be gained from adding extra insulation on top. Providing gloves and head protection with a neoprene helmet is important. If the victim is just in layers of cotton or wool clothing and these are soaked, their cold insulating properties can be reduced to perhaps 5% of their dry value so the victim is effectively naked. Fibre pile or neoprene clothing needs to be supplied. Whether his original clothing should first be removed is again open to debate. Many rescuers would not remove his innermost garments. If a fibre pile suit is placed over these their moisture will be "wicked" away.

Exposure bags for insulation can vary from the Space Blanket via various gauges of polythene bag to the more definitive rescue bags of neoprene, fibre pile or Electoron.

If immersion during rescue is likely, then both fibre pile and Electoron bags can absorb a considerable weight of water adding to the handling problems of the rescue teams. Electoron is likely to drain this extra load more rapidly than fibre pile but both can add significantly to the bulk of the parcelled victim which may preclude his rescue through a tight cave.
Keighley has shown the fibre pile bag to be optimal for mountain rescue by both laboratory tests and field trials. Despite this work cavers needing help in the Yorkshire Dales are likely to be placed instead in an all enveloping 6 mm neoprene exposure bag which with wet and tight caves best suits our purpose. (A space blanket can be used instead as an extra layer with no extra weight or bulk). Its design includes a helmet and a full length waterproof zip which is very expensive and for which velcro would probably be an adequate substitute under most circumstances. It can either include arms with closed sleeves - as most rescue victims in a stretcher prefer their arms free for self help and protection - or can be just a bag without arm tubes which is slightly more efficient. Inside such insulation cold cavers will warm up measurably over several hours.

There is a need to monitor body temperature in hypothermia - if it is falling then victims are in fact dying. Academic precision demands rectal or oesophageal temperatures which are not feasible underground. As a simple workable compromise a temperature reading below the tongue can be taken and changes in this reading more than absolute levels monitored over a period of time.

A subnormal clinical thermometer is essential - with a standard clinical thermometer readings will be off-scale. All rescue teams should carry these. Shake well down and place beneath the tongue for a measured three minutes and note the reading. This will be below correction value and accurately rises by about 5°C but do not be alarmed, do your best and repeat the reading in perhaps half an hour. If it is falling your victim is deteriorating and if rising he is rewarming. At least two thermometers are suggested as the user's fingers can be cold or muddy and breakage through furbuling is likely. Do not use within say fifteen minutes after a hot drink.

A rescue incident in the Yorkshire Dales with a wet-suited caver lying immobile through injury for two to three hours before rescue help arrives gives a mouth temperature of perhaps 91°F - 92°F measured with a subnormal thermometer. With the neoprene exposure bag insulation this is likely to rise by perhaps 1°F per hour during rescue. Such figures are of course unpredictable and just averages. Colleagues waiting in support of injured cavers seem more likely now to be carrying exposure bags and to lie with close body to body contact to prevent heat loss than was generally the case a decade ago - to the definite benefit of victims.

The perceptive and critical reader will have noted that hypothermia theory comes in as in all the best literature but that working observations recorded down caves come in as do the available subnormal thermometers. Resolving any difficulties this causes is left to the reader's ingenuity.

Many rescue teams now carry airway rewarming equipment. This technique was first described by E. Lloyd in Edinburgh hospitals in 1972 and the C.R.O. were the first rescue team in the world to use this method in the field. The concept was controversial initially with a Scottish academic telling the mountain rescue world that it was ineffective long before his experimental data, which was done on animals, was published. The early equipment (the Reviva) was bulky and undoubtedly carrying it up Scottish hills to find that the vast majority of victims did not need it was a deterrent (some were dead and the majority of survivors fared well without it).

The American Coastguards later published experimental work on humans and claimed it was the method of choice for acute hypothermia as it minimised the "After Drop" in core temperature which is a continuing fall after the victim is removed from a cold environment and which can cause appreciable deterioration or death after rescue. However, the most recent work on immersion hypothermia victims who die after rescue has shown that a fall in blood pressure due to removal of the external hydrostatic pressure afforded by the water is more dangerous than the "After Drop" in core temperature.

The heat provided by this technique is small due to the low thermal capacity of air being of the order of around 5kJ/M2/hr - air at around 50°C and with 100% water saturation is around 32°F. However, in the critically hypothermic individual with peripheral circulatory collapse a significant amount of heat is lost in warming and saturating the expired air with water. This is of the order of 35 KJ/M2/hr and can be totally prevented by the airway warming equipment. It is an adjunct to and never a substitute for adequate insulation.

Perhaps the method remains controversial. American and Canadian rescue teams are avidly acquiring such equipment and have added the refinement of several face masks to allow treatment of multiple victims. The "Little Dragon" equipment fits comfortably inside a single ammunition box. There are limitations on what equipment can be carried down to rescue victims and perhaps the most relevant appraisal of the method is the judgement of experienced rescue controllers who find the benefits to victims worth the effort of carrying the equipment. Most of our victims are fortunately not critically cold and certainly derive enormous subjective benefit from breathing the warm air almost to the point of addiction. Their recovery is hastened, their morale boosted and many have been able to walk out, avoiding a stretcher carry.

The U.S. Army use chemical packs which provide heat for several hours after the addition of a small quantity of water. These are placed against the trunk of hypothermic victims as a rewarming measure. Only small heat packs designed to warm the cold hands of skiers are currently available in U.K. I believe that this technique could be developed to be of considerable use in cave rescue in future years.

The Thermal Sarong is a sleeping bag containing tubes through which ethylene glycol heated by a butane burner is pumped. It was designed to help rewarm cold American military divers. The biggest disadvantage is the cost of this equipment which is around $2000.
The Braemar Mountain Rescue Team in Scotland acquired a Thermal Sarong in 1979 but its use in cave rescue has not been evaluated.

The value of alcohol in hypothermia is slightly controversial. It will act as a skin vessel vasodilator and can thus allow heat loss to the victim's disadvantage. Some of the severe cold exposure care monitoring cases (as low as 17°C core temperature in a now legendary alcoholic Chicago negress) have been very drunk and it has been claimed that their elevated blood alcohol levels have protected against the final circulatory collapse which causes death.

A small draught of spirits to an incipient exposure victim in bad conditions could just boost morale and determination enough to be of value but this is problematical and probably the best advice is to withhold alcohol from rescue victims and keep it for the team to enjoy after the incident.

The consensus of medical opinion is that no drugs are of specific value in treating hypothermia. Some will give parenteral hydrocortisone which is probably not rational and some European rescue teams may still give strong sugar solutions intravenously which is almost certainly not rational.

Massaging the limbs is of no value. It may traumatis e skin with frost bite or frost nip on mountains and can assist cooled peripheral blood to return to the core with undesirable effects.

I have never heard of cavers going through the stage described as "warm euphoria". This is a late event in mountain hypothermia in which the victim feels warm and sheds clothing. Scottish teams have described following a trail of discarded clothing to a dead victim. It is common for those collapsed with cold in the hills to have neglected to have donned protective clothing they were carrying in their rucksack or to have ignored nearby sources of shelter.

In rescuing hypothermia victims minimal handling, avoiding in particular sudden postural changes from horizontal to vertical, is desirable. This is obviously totally impractical throughout most cave rescues.

When victims reach the surface helicopter evacuation from the cave entrance to a hospital with intensive care monitoring facilities is justifiable if their condition causes concern and weather conditions permit.

If a helicopter evacuation is not feasible and the journey to hospital could be prolonged then rapid rewarming in a hot bath must be considered.

This technique should never be considered for infants or for the elderly and is of most benefit to victims who have cooled very quickly and who are deteriorating despite help. For some co-existing injuries will make it impractical.

Its main value is for the critically cold but in practice it is mainly used for the slightly chilled so that they and the rescuers can more speedily depart for home or some hostelry!

Facilities should be arranged during rescue and not just considered when the victim arrives on the surface.

A deep bath in a warmed room with the water at 41°C is necessary (or 45°C if a clothed victim is to be immersed). Does your caving hut have a thermometer available to measure this bath water temperature? If the water temperature cannot be measured it should be as hot as a bare elbow can just tolerate.

Keep the victim horizontal throughout - remove clothing apart from underclothing in the warmed bathroom and lift him into the bath. Immerse the trunk but not the limbs. The head should be firmly held throughout by one man who has no other responsibilities. It is important to keep the head securely held and as low as is practical without risking immersion of the face.

The victim may thrash about, move violently, become aggressive and reach a state of near convulsion after immersion. Be aware of this possibility and be able to offer appropriate restraint.

A cold victim will cool the bathwater so that it should be constantly stirred to avoid a cold layer round his person and its temperature maintained by "topping up". Thus more than one bath full of hot water is necessary and around 40 gallons should be aimed at. Pans and kettles may have to be used.

The patient should be observed closely throughout and if he seems to be deteriorating removal from the bath and stabilization lying flat in a warmed bed should be considered.

Medical supervision of this procedure is desirable for a critically cold patient, if available.

As a general rule the victim should be kept in the bath until visible sweating appears on the forehead. Even after this a period of a couple of hours laying flat in a warmed bed is desirable before allowing any activity.

The diagnosis of death in hypothermic patients is difficult and fraught with hazards. With profound cooling a state of almost suspended animation develops where respiration and heart beat may be undetectable. It represents the commonest cause of the dramatic recovery on the mortuary slab after death has been confirmed medically and children submerged in cold water for up to 45 minutes have recovered without cerebral impairment.

With intensive care monitoring for the unique difficulties met during cave rescue must prevail but if in any doubt the diagnosis of death should only be made after failed resuscitation. This could involve maintaining slow cardio-pulmonary resuscitation throughout the transfer to hospital.

However, prevention is better than cure and better equipped and better informed cavers will be our best resource. The last caving hypothermia death in the Yorkshire Dales was in 1969 although walkers and a fell runner have succumbed since then.

Well before this, in both caving and climbing, there were deaths during rescue when exercise was forced on uninjured cold victims to their detriment, this risk not being recognised at the time.
BIBLIOGRAPHY

APPENDIX

SUPPLIERS OF EQUIPMENT REFERRED TO

ELECTRON BLANKET

J.C. Jones,
CUIC,
University College,
PO Box 78,
Cardiff.

LITTLE DRAGON

M.F. Mitchell
Capplerigg,
Kentmere,
Kendal,
Cumbria.

REVIVA

Peter Bell Engineering,
The Slack,
Ambleside,
Cumbria.

THERMAL SARONG

Energy Systems Cop.,
1, Price Street,
Nashua,
New Hampshire,
030 60 U.S.A.

SUBNORMAL THERMOMETERS

Can be ordered at any chemist

NEOPRENE EXPOSURE BAG

Not commercially available but easily made. Can be seen at C.R.O. Depot, Clapham, Nr. Settle, Yorkshire.

M.S. Received June 1984

Dr. John Frankland
"Green Beck House",
Halton Green,
Lancaster, LA2 6PA
CAVE FLOODING AND UNDERGROUND SURVIVAL

Paul Ramsden

Abstract

Flooding is one of the main causes of cave rescues. Finding out as much as possible about the cave and its flood characteristics, together with an up-to-date weather forecast, is good practice before going caving. If, despite the above precautions, you are trapped underground, your chances of survival or physical state will be greatly improved by having a polythene survival bag, gloves and balaclava, all of which may easily be carried on a normal caving trip.

CAVE FLOODING

To many the sporting wet trip is what caving is all about, yet the fun and enjoyment can turn into tragedy if the weather conditions have been misjudged. After all, many caves are really just underground water courses, which often flood, sometimes to the roof, due to their constricted nature. To the inexperienced, caving is a form of Russian Roulette, because they don't know if it is safe to go underground or not. This is not altogether surprising, for relatively little has been written about cave flooding and most of the better material is either out of print (Heap, 1969; Hanwell & Newson, 1970), or not widely available (Halliwell, 1983). Guide books - probably the most widely read caving literature, are generally very poor in this respect. The introductory caving code of Pennine Underground or the early Northern Cave guides did not mention flooding at all. More recent editions have a section on hazards, which includes flooding right at the end, after free-diving sumps.

The thunderstorms of June 1982 produced severe flooding and some caves became impassable less than one hour from the onset of the rain, and caused several rescues. I wrote a warning in both Caves and Caving (No. 17) and Descent (No.53), intending to inform a larger number of people than had the misfortune to get first-hand experience. Halliwell (1983), in an otherwise excellent article, misunderstood the educational logic of my warning, saying had I forgotten "Cave rescue record as flood traps 40 (1975) or even the Mossdale tragedy (1967)". This is a common misunderstanding by the old brigade - many of today's active cavers have not been around long enough to recall these events. Unless you have seen a major flood or have detailed information on the effect of flooding you will probably not treat caves with the respect they deserve. Cavers have been criticised for not knowing that Kingsdale Master Cave floods to the roof, because it was written up in the U.L.S.A. Explorations Journal of 1969. The caver reading the latest guide book, finding no flood warning for this cave may assume there is no problem. However, to be fair, the guide does say "no warning does not mean no hazard".

Some cavers seem to show an illogical indifference to weather conditions, perhaps they don't appreciate the effect of flooding. Others seem so sceptical of the accuracy of weather forecasts that they ignore them, saying "It'll be right" and trust to luck.

WHEN IS IT SAFE OR UNSAFE TO GO UNDERGROUND?

The sensible approach is to assess the risk of flooding, by taking note of the present weather and ground conditions, local stream levels and up to date weather forecast each time you want to go underground. This should then be related to information about the cave before a decision is made: bearing in mind that no warning in the guide book does not mean no flood hazard. In practice people often plan which cave they want to visit in advance and assess its suitability on the day.

1. Flood characteristics of the cave.
 To visit a cave safely you need to find out as much as possible about its particular flood characteristics: Does it flood to the roof? Do pitches, crawl or streamways become impassable? Do sections sump off and prevent escape? Are there sections above flood level where you can wait? It is most unlikely that the guide book will provide sufficiently detailed information and these factors may vary with the magnitude of the flood. The experienced caver will always look for signs of flooding. Flood debris may occur as tide marks on walls, or wrapped around stalactites, other areas may be washed clean. Unfortunately, unless you are a regular visitor to a cave it is difficult to tell the age of flood debris. In the absence of previous knowledge of the cave all you can do is seek advice from others in your club or elsewhere. The Instructors at Whernside Cave and Fell Centre, Dent, read a rain gauge, provide a daily weather forecast, cave all through the year, so can make some correlation between weather forecasts and water in caves, as well as having considerable local knowledge of the Dales. For weather forecast or information Telephone Dent (05875) 213. However, it would be unreasonable to expect anyone to guarantee the safety of an unknown group, in a cave with a flood risk when the forecast is other than good.

2. The Weather Forecast.
 In Britain it can rain at any time of the year, so you must check the weather forecast before going underground. Weather prediction is not an exact science, but is surprisingly
Generally the higher the catchment, the higher the rainfall. Steeper slopes produce faster run-off. Windward slopes, usually west-facing, will be wetter than the lee side of a hill. Streams will tend to rise simultaneously in a semi-circular catchment while tributaries to a long thin valley will tend to rise at different times producing a smaller peak discharge. Similarly, rain falling onto a limestone catchment will often go underground at many separate points, producing several smaller floods, rather than one large flood where the water sinks at one point.

The permeability (infiltration capacity) of a soil is the rate at which water can be absorbed. Thus continuous rain may be absorbed with no run-off until the ground is saturated, but run-off may be produced even on unsaturated ground if rainfall intensity exceeds the infiltration capacity. Given all the above information, it is still not easy to predict how long it will take for a cave to flood, but generally very intense rain will cause more problems than longer periods of steady rainfall.

Ditches in drainage schemes (gripping) or the early stages of afforestation, mean that water has only a short distance to travel before it can flow more quickly in open channels, often draining directly into sink holes. Flooding in recently gripped areas will take place more rapidly and to a greater height than previously.

4. Dangerous weather conditions.

Where the ground has become baked hard in summer, or is frozen in winter, heavy rain is more likely to produce run-off than soak in. This combination in summer is maybe the least predictable. Nice dry weather may lull you into a false sense of security. Thunder may be forecast for days on end, but never seems to happen, at least near you. Convective thunderstorms are commonly associated with high pressure conditions and occur during the afternoon or evenings. Thunderstorms may be very localised but can be so intense that massive flooding is possible in almost any stream cave in just a few minutes. Major flooding is also likely when there is heavy rain on to snow in winter, though this is more predictable. Cavers tempted underground by a dry forecast in winter, may still be caught out by a snow melt flood produced by rising temperatures.

In most circumstances, rainfall will not exceed the infiltration capacity of the soil and will be absorbed. After a period of continuous rain the soil will become saturated and will produce run-off. Obviously the more rain the soil is able to accept before run-off into the caves, the more time you have to get out of the cave safely. Unfortunately, given heavy rain, many stream caves will flood in less time than the length of normal caving trips. Thus, where stream levels are already high, the only suitable caves are those with known dry sections or where the forecast definitely predicts dry weather and falling water levels.

When it rains the soil absorbs the water until it is saturated, then feeds it quickly into the steams, so water levels rise suddenly rather than gradually. This may be a flood pulse, which has its most dramatic effect in a normally dry, flood overflow passage as it is transformed into a raging torrent. To conclude this section, if in doubt about the conditions, err on the side of caution - the caves will still be there next time.

SURVIVAL

If you have misjudged the weather, your chances of survival are increased if you know the cave well. In 1950 in a flooding cave in the Jura, six cavers tried to get out and were drowned, while Dr. Mairey waited in a high place for 27 hours and survived, with water coming up to his shoulders at one point. In 1963 in Marble Steps pot, one man chose to stay put, while the others rushed out; he was drowned. There is obviously no general rule as to whether you should try to fight your way out against the water or wait for it to subside, except to rely on your knowledge of the cave. In floods people have been swept away and rocks carried down pitches damaging ropes. Marbach (1980) has an interesting quotation for those who think they can climb wet pitches "a cubic metre of water weighs a tonne" don't try to fight against it!
If you are well prepared in terms of taking emergency food or equipment underground, you may be able to survive several days. In the Holloch in Switzerland, a group was trapped for 10 days without special camping gear and rationed themselves to two meals of 300 calories a day. Unlike mountaineers, cavers cannot easily carry things like sleeping bags, spare food and clothing on a regular trip. They cannot change their normal clothing for something different, just because they become trapped. Some knowledge of the ways in which heat loss takes place and the effectiveness of different clothing, may help to prevent unsuitable gear being used.

1. Physiology

It is useful to look at the physiology of temperature regulation for a person who is not suffering from hypothermia or exhaustion. The "core" of the human body (brain, heart and lungs) must be maintained at a constant 37°C for normal operation. Heat is produced as a waste product in the burning of food, but most even at rest, is produced in the muscles. Under normal conditions the metabolic processes of the body at rest will produce about 100 W/hr (approx. 80 Calories), but this may rise up to ten times during strenuous exercise. Heat loss must balance heat production if the core temperature is to be maintained.

2. Heat Loss

Heat is lost from the body by conduction, convection, radiation and evaporation from the skin, and by evaporation from the lungs. Heat is lost in the following ways:

- **Conduction** - directly from the body by physical contact with cold surfaces.
- **Convection** - air warmed by the body is carried away and replaced by cold air or water.
- **Radiation** - by emission of energy to the environment.
- **Evaporation** - from sweat and from the lungs because of the large quantity of heat needed to vaporise water. To raise the temperature of 1 litre of water from 0°C to 100°C requires 100 Calories, but to evaporate it requires 580 Calories. This is easily the most important cause of heat loss when trapped underground.

In cold conditions body mechanisms act in the following ways:

a) Constriction of the blood supply to the skin and underlying tissues, forming a protective "shell" which reduces heat transfer to the environment. There is little vasomotor control of blood vessels to the head, so at low temperatures, or when the rest of the body is well insulated, the head may lose 50% of the body's total heat loss.

b) Shivering - involuntary, rapid muscular contractions produce as much heat (and exhaustion) as moderate work such as jogging.

c) Physical exercise increasing heat production and ultimately exhaustion. Perhaps this voluntary alternative to shivering may be better for morale. I don't know which is better in terms of heat conservation.

d) Adding more clothing (insulation).

e) Seeking shelter from wind and water.

3. Environmental Factors

Wind or strong draughts are to be avoided as heat is lost by convection. The phenomenon of "wind-chill" is well known where the effective temperature in moving air is equivalent to a much lower temperature in still air. Wind similarly plays a very important part in evaporation from wet clothing.

Water - this may be difficult to avoid, especially in a flooding cave. Water has over 200 times the thermal conductivity of air, so the efficiency of clothing in terms of insulation is drastically reduced when wet. The evaporation of water from clothing takes enormous amounts of heat from the body.

4. Clothing

Conductive and convective heat loss is reduced by clothing. The thickness of clothing and its associated trapped air determine the amount of insulation provided. The more layers of clothing you have, the more air is trapped and the better the insulation. If the clothing becomes wet the insulating effect is destroyed as the air is replaced by water. This was shown experimentally by Pugh. Subjects were dressed in 1.8 clo units consisting of a parka, wool jersey, cotton string undershirt, cotton shorts, socks and gloves. (A Clo. unit is equivalent to a businessman's summer clothing = 5mm thickness). When the clothing became wet, it dropped to 0.18 clo. units (i.e. 1/10 of the dry value). With waterproof rain gear the protective effect for wet clothing increased five times to 1.0 clo. units.

Some materials are better than others: wool is generally recognised to be good even when wet, though it tends to hold moisture longer than most synthetics. Cotton jeans, T-shirts, boiler suits etc., are very poor if wet and should definitely be avoided. They hold moisture against the skin and heat is lost by conduction and evaporation. It would appear that much of the traditional caving clothing is only adequate when dry or when heat is produced by moving; an enforced stay could be dangerous.

Most synthetic fibres fall somewhere between wool and cotton in terms of thermal properties, the differences often being in construction and thickness of materials. Fibre pile fabrics are made from various kinds of synthetics in different constructions. Tests at Leeds University comparing Mountain Rescue casualty bags showed that the Eskimo fibre pile bag performed quite well even when wet. Water is taken by capillary action to the
knitted backing keeping the pile, which is against the body, dry. Thus heat loss by conduction is reduced. This "wick" effect varies with different fabrics, but certainly makes the wearer more comfortable. The fibre pile bag showed that retention of body heat cannot be measured in terms of thermal resistance alone and that the mechanism of heat loss depends on the structure of the textile.

The fit of clothing has an effect on its efficiency. Infra-red photographs of someone wearing fibre pile garments show heat loss where there are wrinkles or joins in the material. It is possible to get a kind of bellows action, pushing out warm air as you move about; this is best remedied by having sealable neck and wrists.

Neoprene consists of masses of tiny air pockets embedded in rubber, so that its insulation value is relatively unaffected by water. 4 mm wetsuits seem to be insufficiently warm when you stop moving, though there have been several groups trapped for 48 hours wearing them. Most wetsuits do not have hoods or pockets for emergency gear.

The most effective way of improving normal clothing is to wear a PVC waterproof outer layer. This will keep out the wind and most of the water. Even if clothing is wet underneath, the oversuit will dry off quickly and prevent evaporation which is the largest source of heat loss. Unfortunately, during normal use waterproofs cause you to sweat and reduce the insulation value of the underclothing. The secret is to allow as much air in as possible when moving about.

5. What survival aids can you realistically take with you?
 a) Polythene survival bag - thin or thick, probably better than a reflective space blanket or bag. This is the most important single item and easy to carry.
 b) Hood/Balaclava/Neck-scarf/Tube hat (covers face)/Polythene carrier bag for a head cover.
 c) Gloves.
 d) Food - easily digestable, high energy.
 e) Closed cell foam "Bum Pad".
 f) Spare pullover/waistcoat wrapped in a polybag in tackle bag.
 g) Whistle/paper/plastic to write message on.

These will fit into helmet/welly boot/packed into a polythene bag in the hollow in the small of one's back.

6. What to do if you are trapped?
 a) Find warmest, safest place available using knowledge of the cave. Make wind break if necessary/possible.
 b) Wring out wet clothing.
 c) Provide maximum insulation to ALL parts of the body:
 (i) get into polythene bag if available, curl up with thighs to chest, to reduce surface area available for heat loss - helmet on top of polybag.
 (ii) If in a group with a Tent sack huddle together.
 (iii) If no bag etc. huddle/cuddle together for mutual warmth - change around to prevent cramp and take turns at being on outside.
 Human-Sandwich technique has been used effectively.
 d) Sit on insulating material, e.g. tackle bags.
 e) Breathe into bag occasionally (see below) or use candle - beware of CO₂ build-up.
 f) Exercise - isometric tensing of muscles to keep warm.
 g) Eat food - a little every 3 or 4 hours - helps prevent exhaustion and good for morale.
 h) Leave message somewhere conspicuous if you have sheltered in an obscure place/Conserve lighting.
 i) Be confident, don't give up hope - psychological aspect is important.

EXPERIMENTS

I did a few simple temperature measurements both with groups and alone, pretending to be stuck down a cave, though only for 30 minutes at a maximum (Fig. 1). Having spoken to physiologists about several queries, I am not sure how meaningful these results are. Ideally the tests should have been of many hours duration. Several questions are posed by these tests.

Q.1 One effect of the core/shell variation is that there is a large amount of heat stored in the body which can be lost without untoward effect. This stored heat may be as much as one hour's resting heat production. (Harper, 1975). Does this invalidate the tests?

Q.2 Is exercise useful or harmful, in that excessive exercise may help to cause exhaustion/cooling of the body?

Q.3 If you stay warm (26°C) in the survival bag, will the blood supply to the skin shut down? If not, are you conserving energy to best advantage?
Q.4 By breathing into the survival bag, condensation occurs. The insulation value of clothing will be impaired - is this equivalent to heat conserved by insulation of the respiratory system?

Q.5 By breathing into the survival bag or burning a candle or carbide, carbon dioxide is produced. How dangerous is this with the bag opening downwards, or tiny holes in the top? Is warm CO₂ still heavier than air? Is there a danger of oxygen deficit?

Insulation of the body still leaves the respiratory system as a source of heat loss. Water is evaporated and heat lost in the lungs to saturate air which is expired at 37°C. This is an involuntary process which still continues in cold conditions. Little energy is required to heat the air, but evaporation in the lungs may account for over 200 cal. per day. If air is breathed into the bag, the inspired air will be partially warmed and saturated, not at 37°C. If this is compatible with not producing excess CO₂ or condensation, it will serve to insulate the respiratory system.

Warming the air in a bag with a candle or carbide lamp has the effect of lowering the relative humidity, because warm air will hold more water vapour than cold air; you might even dry out inside if you are not breathing into the bag.

Experiment 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>11°C</td>
</tr>
<tr>
<td>2 min</td>
<td>21°C (70°F)</td>
</tr>
<tr>
<td>6 min</td>
<td>24°C (75°F)</td>
</tr>
<tr>
<td>10 min</td>
<td>25.5°C (78°F)</td>
</tr>
<tr>
<td>20 min</td>
<td>26°C (78.5°F)</td>
</tr>
</tbody>
</table>

Experiment 3 (See Fig. 2).

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>9°C</td>
</tr>
<tr>
<td>3 min</td>
<td>16°C</td>
</tr>
<tr>
<td>7 min</td>
<td>17°C</td>
</tr>
<tr>
<td>10 min</td>
<td>18°C</td>
</tr>
<tr>
<td>16 min</td>
<td>19°C</td>
</tr>
<tr>
<td>20 min</td>
<td>19.5°C</td>
</tr>
<tr>
<td>25 min</td>
<td>20°C</td>
</tr>
<tr>
<td>30 min</td>
<td>20°C</td>
</tr>
</tbody>
</table>

Experiment 5 (See Fig. 3)

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>9.5°C</td>
</tr>
<tr>
<td>2 min</td>
<td>15°C</td>
</tr>
<tr>
<td>4 min</td>
<td>18°C</td>
</tr>
<tr>
<td>6.5 min</td>
<td>20°C</td>
</tr>
<tr>
<td>10 min</td>
<td>21°C</td>
</tr>
<tr>
<td>14.5 min</td>
<td>22°C</td>
</tr>
<tr>
<td>16.5 min</td>
<td>23°C</td>
</tr>
<tr>
<td>20 min</td>
<td>23.5°C</td>
</tr>
<tr>
<td>25 min</td>
<td>23.5°C</td>
</tr>
</tbody>
</table>

Experiment 4 (See Fig. 2)

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>11°C</td>
</tr>
<tr>
<td>2.5 min</td>
<td>20°C</td>
</tr>
<tr>
<td>5 min</td>
<td>23.5°C</td>
</tr>
<tr>
<td>7 min</td>
<td>24°C</td>
</tr>
<tr>
<td>10 min</td>
<td>25°C</td>
</tr>
<tr>
<td>18 min</td>
<td>26°C</td>
</tr>
</tbody>
</table>

Observations

The temperature rises really quickly, especially with a heat source, to a fairly consistent level. Whether it would be quite different in the longer term requires further tests. If there are worries about the polythene clinging to the face, the escape technique is to push a finger through it. The polybag was inverted in Fig. 3, leaving feet (Wellington boots) exposed and the bottom of the bag open, assuming CO₂ would drain out being heavier than air. The symptoms of excess CO₂ in the atmosphere are panting, a headache and a racing pulse. None of these occurred during the experiments. Care is needed not to burn or damage the polythene especially if you are waiting for a long time. A 2 oz nylon bag would be better, if heavier, bulkier and more expensive.
Fig. 1. Rise of temperature against time for caver(s) in survival bags as in experiments 1 - 6.

Fig. 2. Polythene survival bag: opening at top.

Fig. 3. Polythene survival bag: opening to bottom.
Marbach (1980) described a technique called "the Tortoise" where you crouch under a space blanket, tucked in well under feet and buttocks, with a carbide between your legs for warmth. He suggests taking off oversuit and wellies and sitting on them for insulation. This would not be as weatherproof as a polythene bag. I would need quite a lot of convincing that it was going to be beneficial, before I took off my oversuit.

REFERENCES

Ramsden, P. 1982 Yorkshire Dales Flash Floods. Descent No.52 p.12
Ramsden, P. 1982 Yorkshire Dales Flash Floods. Caves and Caving No.17, p.40

M.S. Received June 1984.

Paul Ramsden,
Whernside Cave & Fell Centre,
Dent, Sedbergh, Cumbria.
First aid is the initial care afforded to an injured patient at the site of an accident before definitive medical care is given. In many cases, the eventual outcome of the case may depend on what is done during this period, and life and limb may be saved if the person administering first aid is well trained in its principles. Though there is very little that can be done for an injured patient at the scene of an accident, some things are extremely important and may save the patient's life. The tables below outline the basic aims and actions of the first aider.

AIMS OF THE FIRST AIDER

1. Preservation of life
2. Prevention of deterioration
3. Assist in recovery

ACTIONS AT THE SITE OF ACCIDENT

1. Resuscitation - perform life saving measures
2. Assess overall situation - make a diagnosis from a history and examination; splint fractures, relieve pain and anxiety
3. Alert rescue and arrange transport

For life to be maintained, it is necessary to provide an adequate supply of oxygen to essential organs, and blood in an adequate volume of blood. To ensure this, there are important initial steps to be taken in order of priority. These are: AIRWAY, BREATHING, CIRCULATION - "A, B, C". These should be performed with speed, calmness and efficiency, without panic as this will only aggravate the fear and anxiety of the victim.

1. **Maintenance of an open airway and breathing**

 This is the main consideration in first aid. Interference with normal respiration is normally due to an accumulation of blood, vomit, or mucus in the mouth or pharynx (upper airway). This should be removed as soon as possible using one's fingers and the patient placed in the recovery position once their colour is good and breathing regular. In the event of a broken jaw, the tongue may fall back and block the pharynx. This can be corrected by pulling the tip of the tongue forwards thus unblocking the airway. The position can be held if necessary. Normal respiration can be assumed when the patient is maintaining a healthy pink colour with regular easy breathing. If, after initially clearing the airway, the patient's colour remains poor, bluish lips and face, and breathing sounds difficult, there may still be an obstruction. Therefore, the initial steps should be repeated. However, this may be significant of serious damage inside the chest or subsequent to a head injury damaging the brain's control of breathing. If after again ensuring the airway is clear, respiration remains poor, then it is probably worth giving mouth to mouth resuscitation.

2. **Circulation and control of haemorrhage**

 Any obvious bleeding should be stopped immediately by direct pressure over that point using whatever is available as a dressing. Virtually all bleeding can be stopped by the application of firm pressure. The use of a tourniquet would not be advocated except as a last resort to stop uncontrollable bleeding from a limb. If no pulse is felt either at the heart, neck, wrist or groin, then external cardiac massage should be commenced on the assumption that the heart has arrested. This may then reveal an external site of bleeding which had stopped due to blood loss and may now have a pressure dressing applied. A pulse may then return having prevented further blood loss from the circulatory system. If no further bleeding sites are found, then there may have been considerable blood loss around broken bones or from internal chest and abdominal injuries. In which case, little can be done until intravenous fluids can be given. The heart may also arrest from other causes such as lack of oxygen if respiration is impaired from direct trauma or secondary to a head injury.

3. **Shock**

 "What do we do if the patient is shocked?" is a question often asked by the layman. Shock in the medical sense may result from many causes, but following an accident is normally due to bloodloss causing a decrease in fluid in the circulatory system, which is manifested in the patient's clinical state. They are drowsy, apathetic, restless with cold, clammy skin and a rapid, poor pulse. This is quite different from the "shock" the patient is experiencing from being in a state of fear and anxiety after an accident, though the latter may in fact aggravate the former. If the layman follows the basic principles of first aid, handles the patient gently, reassures them and keeps them warm, he will have done all he can to help prevent shock before medical help arrives.
4. The recovery position
This position consists of having the patient on their side with the uppermost arm and leg brought forwards to maintain them in this position. The injured patient is very likely to vomit and if this is inhaled into the lungs, breathing problems can rapidly arise. When on their sides, there is less danger of this and the airway can be quickly and easily cleared. Therefore, if possible, it should be used on all patients, especially if there is a head injury and impaired consciousness. If spinal injury is suspected and the patient is likely to vomit, they can still be rolled on to their sides. However, every effort should be made to minimise movement of the spine and the position modified by keeping the arms into the side and legs straight with a tackle bag or something as support against the upper thighs and abdomen.

5. Cardiac massage and mouth to mouth resuscitation
The principles of these techniques can be learnt from any first aid manual and are therefore not described. Anyone so severely injured in the underground situation is realistically unlikely to survive. However, unless the injuries are so severe that the patient is clearly dead, it is probably worth persisting with such attempts until medical help arrives.

6. Assessment of a head injury
If the patient has been knocked unconscious or received a blow on the head, it is important to assess his initial level of consciousness and any change that may occur in it. A patient who is initially alert and orientated after being knocked out and then becomes increasingly drowsy towards unconsciousness, may have internal bleeding in or around the brain. Likewise this may be signified by a decrease in the level of consciousness in the already conscious patient. The four commonly used levels of consciousness are listed below; the original level and any change must be recorded to inform the medical officer when he arrives.

(a) Alert and orientated and responding to all commands
(b) Drowsy and disorientated and responding to simple commands
(c) Comatose and responding to painful stimuli only (pinching the skin will cause the patient to groan and pull your hand away)
(d) Comatose and no response to any stimuli

Also useful in assessing a head injury are the size of the pupils and their response to light. Normally in the dark the pupils are dilated and respond to a bright light by becoming smaller. Pupils which are dilated and not responding to light are suggestive of a significant head injury.

The patient with a head injury is particularly likely to vomit and should be placed in the recovery position.

7. Further Assessment
Following and during resuscitation, if you did not see the accident then further information as to the nature and possible severity of the injuries can be obtained from either the victim or those at the scene should the victim be unconscious. How far did they fall and how long ago; what did they hit, and what position were they in when they landed. Though one is taught not to move the patient until medical help arrives, this makes no sense in the underground situation. Obviously a patient at the bottom of a wet pitch or awkwardly amongst boulders will have to be moved to a more comfortable position. Provided this is done carefully, and movement is minimised, recovery will be aided.

Next, from a history and examination, an overall assessment of the injuries sustained should be made. Enquire as to sites of pain, its character and whether it is getting worse, this will provide pointers for a more careful examination. Are they feeling sick, faint, or experiencing difficulty with breathing, should they be in the coma position? If unconscious, groaning or holding a particular arm or leg may suggest injury. Examination should be carried out in a logical order and is outlined below, think in terms of look, feel, and move. Some aspects of resuscitation are repeated to emphasize their importance.

(a) Look at the patient overall. Note the position of the limbs, neck, and back; are they normal? Is the patient a good colour and breathing normally? Are they visibly in pain?
(b) Look at the head.
 - Note the colour of the lips and mouth; are they a good red colour or bluish? If blue, this is suggestive of impaired respiration. What is the cause?
 - Look at the mouth; is there any obstruction to breathing? What is it?
 - Look at the ears and nose; are they draining blood or clear fluid? The latter, if actually draining, could be cerebral spinal fluid, rather than water. Both blood or cerebral spinal fluid are suggestive of a head injury.
 - Look at the eyes; are the pupils dilated and do they react to light?
 - Look at the skull; feel it for dents, lumps, and deformity, which may be suggestive of a skull fracture. Scalp wounds can often bleed frighteningly, but haemorrhage can normally be controlled with simple pressure.
(c) Examine the back and neck (spinal injury)
- Is the position normal?
- Is there any specific site of pain?
- Is there any swelling or deformity along the line of the spine?
- Can the patient feel and move their arms and legs? Loss of sensation may mean damage to the spinal column or nerves. If the above suggests a spinal injury and the patient’s position is such that they need to be moved before the rescue team arrives, this can be done with care. In the case of possible neck fractures, all movements of the head, especially forwards, should be avoided. During any movement of the patient, the neck should be pulled gently away from the body and extended backwards (if at all possible, some form of neck collar may be improvised to hold this position) (Fig. 1). In movement, the patient’s neck and body should be moved in one piece and really several people need to be present to move the patient in this manner (Fig. 2). With the back, if in doubt, treat as if an injury is present. As for the neck, the patient’s body and neck must be moved in one piece with the legs and back kept in a straight line and back extended (arched backwards). This can be achieved satisfactorily by several people lifting the patient using their arms and hands as support.

(d) Chest. Bruising over the chest wall with pain on breathing, may suggest rib fractures. This can be very painful and therefore handle the patient carefully and give early pain relief when the rescue arrives. If internal injuries are suggested, little can be done underground.

(e) Abdomen. As above, difficult to assess and little can be done for internal injuries.

(f) Pelvis. Feel for instability or pain by pressing on the pelvic bones which may suggest a fracture. In which case, early pain relief and very careful transport will be needed.

(g) Fractures (broken bones). Fractures are normally classified into two groups close to where the bone is broken and the skin is not torn, and open or compound where a portion of the bone has protruded through the skin. In the latter case, this may only be seen as a fresh wound over the fracture as the bone may re-enter the body. These sort of fractures are very likely to become infected and the earlier they can be covered with some form of dressing to keep them clean, the better. The list below are findings that suggest fractures.
- Pain and tenderness over a bone at the site of injury
- Obvious deformity of the involved area
- Inability to use the affected area without extreme pain or inability to bear weight on the involved area.
- A grating sensation noted with the hands when the affected area is held or moved.

Fractures are very painful and initial treatment is simple splintage by the most practical method available before a more formal splint and pain relief are given. Nerves and blood vessels can be damaged by broken bones. Therefore, before applying a splint, check for feeling, movement, and colour (blue may suggest impaired blood flow) and at regular intervals afterwards. If possible, elevate the affected limb higher than the heart. A simple list of splinting methods is given below.
Collar bone and shoulder.
Strap the arm bent at elbow across the chest.

Upper arm and lower arm.
Strap either to the side of the body or in a sling.

Wrist and fingers.
Support in a sling if possible and strap fingers together.

Leg.
Strap to the opposite limb.

Foot and ankle.
If a foot or ankle injury is suspected, it is probably better to leave the boot on as this will act as a good splint and reduce swelling and movement.

Now that the general situation is under control and the rescue team is being alerted, it is a question of waiting. The patient is likely to be cold and is in a state of high anxiety and fear. Everything should be done to keep him warm, comfortable and dry. Move the patient carefully if necessary. Sit beside him to keep him warm and out of draughts. Talk to him and relieve his anxiety and fears by your confidence and encouragement that all will be well.

In summary, at an accident, remember the fundamentals of first aid: A for Airway, B for Breathing, C for circulation. Do not panic or flap. Act quickly, calmly and efficiently following a logical set of steps. Assess the patient's level of consciousness and monitor it. Make a list of the injuries you suspect to help the medical officer when he arrives. Above all, do everything possible to keep the patient warm, dry, and in good spirits, as their assistance during rescue may be vital.

T. Lyons,
107 Hadfield St.,
Upper Walkley,
Sheffield.
MEDICAL EQUIPMENT FOR CAVING EXPEDITIONS

T. Lyons

What medical gear should we take? This is a question often asked. Caving expeditions vary greatly in size, duration, location and objectives, but none can avoid the possibility of an accident or illness. As seen from the tables below showing the medical problems encountered during the 1982 Australasian Muller expedition to Papua New Guinea, a large, fit group may encounter remarkably few problems in a remote area. However, any illness that occurs can become rapidly more serious due to the remoteness of the expedition. It is therefore worth having some knowledge of the problems likely to be encountered and the facilities to start early treatment.

Muller 82 Medical Survey: Results showing numbers affected from 45 completed questionnaires.

1. Wounds: Clean 23
 Infected 12
2. Musculo-Skeletal problems:
 Major 0
 Minor 13
3. Diarrhoea and vomiting: 17
4. Fungal infections: Groin, Feet, Hands 14
5. Allergy: Plants (stinging tree) 7
 Insects 7
6. Coughs, colds, bronchitis: 3
7. Urinary tract infections: 2
8. Gastritis, Oesophagitis: 1
9. Constipation: 1
10. Piles: 1
11. Ear Infections: 1
12. Eye Infections: (2 - leech in eye) 1
13. Dental abscess: 1
14. Burns: Fire 1
 Sun 1

The survey shows the vast majority of problems arose from the first four groups, all of which are treatable with a limited supply of medicines to be discussed later.

Expedition medicine, however, should start long before the departure abroad. Members should have adequate immunizations against: Tetanus, Typhoid, Cholera, Polio, Yellow Fever, Hepatitis, Rabies, and antimalarial prophylaxis depending on the area of the world they are visiting. Everyone should have a dental check up before departure, a medical examination if indicated and arrange full medical insurance. Where the expedition is very remote, it is worth arranging some facilities for emergency removal of a seriously injured patient by helicopter if possible.

While abroad, much expedition medicine should be preventative. Meticulous attention should be paid to cleanliness of food and water and adequate sanitary arrangements made away from the camp. Personal hygiene should be of a high standard, paying particular attention to cleaning and dressing cuts and grazes as soon as possible after they occur to minimize infection. When dangerous activities are being performed, greater safety precautions than normal should be observed, to avoid accidents after possibly long and arduous trips.

The recommended treatment of the common conditions likely to be encountered are outlined below:

1. Cuts, wounds, etc.
 This is likely to be the commonest problem. The best treatment is to cleanse the area with Savlon, then apply Betadine paint and apply dry gauze and adhesive tape. Alternatively, for an infected cut, a Bactigras dressing may be more comfortable. If not going caving or walking, airing a sore and exposing it to the sun is beneficial. Avoid topical and systematic antibiotics unless indicated. If wounds look bad, with several limbs involved, tender lymph nodes, fever or general malaise, then use Amoxycillin (if allergic, Trimethoprim) or if the wounds are very deep and not responding, Cloxacillin (or Cephradine).

2. Diarrhoea.
 The main point here is hygiene. Any sort of gastroenteritis travels; faeces to hands to utensils to mouth, yours or someone else’s. So this chain must be stopped from starting and if it sets in, it must be curbed quickly.
 So: a) always use your own utensils, and no dipping into the cooking pots
 b) always wash your hands with disinfectant soap after toilet visits
 c) as much as possible, perform your functions on trips away from camp, otherwise use camp toilet.
 If diarrhoea does arise, initially treat with a water only diet and sugar and salt. Diarrhoea spoons are worth having, salt one end, sugar the other. After 48 hours, if this regime fails, codeine phosphate, 2 tablets initially, followed by 2 tablets 6 hourly should stop it. After a few days, Amoxycillin and Metronidazole should be considered.

3. Aches and pains.
 Muscular pains and tears are best treated by rest and a simple analgesic such as Paracetamol or DFL18, rubbing an analgesic balm such as Transvasin into the affected area will give temporary relief. Ligament injuries (joint sprains) can be treated in a similar manner with support from either an elastic adhesive elastoplast or tubigrip. If possible, the affected part should be elevated to avoid swelling. For severe pain, Temgesic tablets are useful. Place 1 or 2 under the tongue six hourly.

Caving activities with damp and sweating lay one open to fungal infection of the feet (athlete's foot) the groin (Dhobi itch) and hands. Prophylaxis is again better than cure. After caving, clean feet carefully, dust with an anti-fungal powder such as Tineafax, and keep them as dry as possible. Wear flipflops or sandals around camp. If affected, regular use of Tineafax powder and cream should cure the problem. Cotton underwear is far less sweaty than nylon! Take your boxer shorts!

Medical kits can be divided into personal, base camp and emergency kits. They are made on the basis of a 15-man, 4-week trip to an area where it is assumed medical help would be available within a day or two if necessary. Many of the drugs are available on prescription only, but the kits are made on the basis of use by the layman and most things should be purchasable with a prescription if you discuss your needs with a GP. At the end, I include additional drugs and equipment that could be taken on a longer more remote expedition which would have an expedition doctor.

PERSONAL KITS

Each expedition member should carry a personal supply of medical equipment for use to and from the expedition and when in the field. Below is a suggested list and should be carried in a sealed waterproof container. If a member takes any drugs regularly, he should ensure he has an adequate supply for the duration of the trip.

Personal Kit Contents:

<table>
<thead>
<tr>
<th>Item</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scissors</td>
<td></td>
</tr>
<tr>
<td>Elastoplast 2" roll + small gauze dressing and selection of adhesive elastoplasts</td>
<td></td>
</tr>
<tr>
<td>Roll 3" crepe bandage, sprains, etc.</td>
<td></td>
</tr>
<tr>
<td>Sun tan cream</td>
<td></td>
</tr>
<tr>
<td>Lip salve</td>
<td></td>
</tr>
<tr>
<td>Insect repellent</td>
<td></td>
</tr>
<tr>
<td>Paracetamol 5 gm tablets: quantity 10: 1 or 2 tablets 4-6 hourly for headaches, fever, etc.</td>
<td></td>
</tr>
<tr>
<td>Codeine Phosphate 30 mg tablets: quantity 15: 2 tablets 6 hourly for diarrhoea until it subsides</td>
<td></td>
</tr>
<tr>
<td>Stemetil (Prochlorperazine Maleate) 5 mg tablets: quantity 10: 1 tablet 4-6 hourly for travel sickness, vomiting</td>
<td></td>
</tr>
<tr>
<td>Tineafax: 50 gm tin: fungal infections</td>
<td></td>
</tr>
<tr>
<td>Caladryl Cream: 42 g tube: sunburn, insect bites, irritation</td>
<td></td>
</tr>
<tr>
<td>Water purifying tablets: cake disinfectant soap</td>
<td></td>
</tr>
<tr>
<td>Safety pins also useful</td>
<td></td>
</tr>
</tbody>
</table>

Base Camp Kits

A. General equipment

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thermometer</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Scissors</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Scalpel blades</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Safety pins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Aid Manual (St. John's Ambulance)</td>
<td>Advice on drugs, quantity, contraindications</td>
</tr>
<tr>
<td></td>
<td>MIMS Drug Index</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Splinter forceps</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Paper clips</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat up and drain blood blisters behind fingernails</td>
</tr>
</tbody>
</table>

B. Dressings

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Savlon sachets 10 mls. (to dilute)</td>
<td>Cleaning wounds</td>
</tr>
<tr>
<td>50</td>
<td>Packet cotton wool balls</td>
<td>Cleaning wounds</td>
</tr>
<tr>
<td>50</td>
<td>Cotton buds</td>
<td>Cleaning dirt from eyes, applying Betadine paint</td>
</tr>
<tr>
<td>20</td>
<td>5 x 5 cm Gauze dressings</td>
<td>Cleaning and dressing wounds</td>
</tr>
<tr>
<td>10</td>
<td>5 x 5 cm Melonin dressings</td>
<td>Wound dressing</td>
</tr>
<tr>
<td>10</td>
<td>10 x 10 cm "</td>
<td>Burns, infected wound</td>
</tr>
<tr>
<td>5</td>
<td>10 x 10 cm Bactigras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assorted box</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50 adhesive elastoplastasters</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Elastoplast dressing strips</td>
<td></td>
</tr>
<tr>
<td>2 rolls</td>
<td>Zinc Oxide Tape</td>
<td>Attaching dressings, etc.</td>
</tr>
<tr>
<td>1</td>
<td>Triangular bandage</td>
<td>Arm support</td>
</tr>
<tr>
<td>5</td>
<td>5-packet Steristrips</td>
<td>For small cuts instead of sutures</td>
</tr>
<tr>
<td>1</td>
<td>Roll 7.5 cm elastic adhesive elastoplast</td>
<td>Sprains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ankle, Sprains</td>
</tr>
<tr>
<td>2</td>
<td>5 cm + 10 cm rolls</td>
<td>Knees</td>
</tr>
<tr>
<td></td>
<td>Crepe bandage</td>
<td>Elbow</td>
</tr>
<tr>
<td>1 metre</td>
<td>C/D size Tubigrip</td>
<td>Wrist</td>
</tr>
</tbody>
</table>
C. Drugs

(a) Alimentary System

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 30 | Antacid tablets | Indigestion
Directions: 1 or 2 as needed |
| 50 | Codeine Phosphate 30 mg tablets | Diarrhoea
Directions: 2, 6-hourly as needed |
| 25 | Stemetil 5 mg tablets | Sickness
Directions: constipation
Directions: 1 or 2 at night if needed |
| 25 | Sennokot Tablets |
(b) Pain Killers

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 50 | Paracetamol 0.5 mg tablets | Mild pain
Directions: 1 or 2 as needed |
| 50 | Dihydrocodeine: DF118 30 mg tablets | Moderate pain
Directions: 1 or 2, 4-6 hourly |
| 20 | Bupronorphine: Temgesic 0.2 mg tablets | Severe pain
Directions: 1 or 2, 6-8-hourly
placed under tongue |
| | 2 tubes Transvasin, 30 g tubes | Analgesic balm
Directions: apply to skin over muscle, ligament sprains for symptomatic relief |

(c) Antibiotics

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 84 | Amoxycillin (4 courses) 250 mgm tablets | All common infections
Directions: 1 tablet 8-hourly for 7 days |
| 80 | Trimethoprim 200 mgm tablets | Directions: take 400 mgm 12-hourly for 5 days |
| 56 | Cloxacillin (2 courses) | For deep wounds or severe infections
Directions: 500 mgm 6-hourly for 7 days
Directions: 250 mgm 6-hourly for 7 days |
| 56 | Cephradine (2 courses) 250 mgm tablets |
Note: People's opinion will vary greatly on which antibiotics to take.
The above is my ideal; however, if one took Trimethoprim or Cephradine alone,
this would cover most eventualities realistically. |

60 Metronidazole (2 courses) 400 mgm tablets
For chronic diarrhoea
Directions: 800 mgm 8-hourly for 5 days
(only necessary for tropics with risks of amoebic dysentery and granitosis.)

Anti-malarials as necessary; check area

(d) Antisceptics

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 100 ml | Betadine paint | Apply to all minor cuts and grazes
(see General List) |
| | Antisceptic soap |
| | Savlon sachets |
(e) Anti-Allergy

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 30 | Chlorpheniramine 4 mg tablets | for Allergic conditions to irritations, etc.
Directions: 1 tablet 6-8-hourly as needed. |

(f) Ears & Eyes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 ml | Chloromycetin:
Eye drops 0.5%
Ear drops 0.5%
Saline eye drops | for infections
Directions: use 1-2 drops 4-6-hourly
Eye wash
Local anaesthetic to help remove foreign bodies
eye examination: 2 |
| ½ ml | Amethocaine |
| | Fluoresceine |
(g) Skin Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 25 gm | Caladryl Cream | (as Personal Kit)
Tineafax foot powder |
2-3 tubes | with above for fungal infections |
| 1 tube | Amethocaine ointment | Useful for piles, sunburn to soothe |

(h) Vitamins, Dextrose

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 10 | Temazepam 10 mgm | For anxiety, sleeplessness if really needed
Directions: 1-2 as needed |

(i) Hypnotics, sedatives

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Of choice, if need is felt
| |
| |
| |

173
Additional Drugs: Equipment that might be needed for a major expedition with a doctor present. No quantities given as really a reference list.

General

- Sphygmomanometer
- Needles
- Haemocel solution
- IV Giving Sets
- Suturing set: suture holders
- scissors, forceps
- Tourniquet for venepuncture
- Plaster shears
- Splints for fractures
- Stretcher

Drugs

- Syringes, Hypodermic Needles
- Butterflies
- Dextrose/ Saline solution
- Intravenous Cannula's
- Sutures
- Surgical gloves
- Plaster rolls
- Velvand for underneath plaster
- Useful anyway if available if first aid trained

General

Sphygmomanometer

Needles

Haemocel solution

IV Giving Sets

Suturing set: suture holders

scissors, forceps

Tourniquet for venepuncture

Plaster shears

Splints for fractures

Stretcher

Drugs

Antibiotics:

- for intravenous:
- or intramuscular:

Analgesic

Local Anaesthetics: Lignocaine 1% - 2%

- Hydrocortisone Injection
- Maxolon Injection
- Adrenaline Injection
- Dextrose 50% Injection
- Aminophylline Injection

Emergency Kit: No Doctor

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauze Dressings</td>
<td>5 x 5 cm</td>
</tr>
<tr>
<td>Wound dressings</td>
<td></td>
</tr>
<tr>
<td>Medium/Large sizes</td>
<td></td>
</tr>
<tr>
<td>Melonin dressings</td>
<td>5 x 5 cm</td>
</tr>
<tr>
<td>10 x 10 cm</td>
<td></td>
</tr>
<tr>
<td>Crepe bandages</td>
<td>5 cm and 10 cm</td>
</tr>
<tr>
<td>Adhesive tape</td>
<td></td>
</tr>
<tr>
<td>Steri-strips</td>
<td></td>
</tr>
<tr>
<td>Packet of Savlon and Cotton Wool Balls</td>
<td></td>
</tr>
<tr>
<td>Triangular bandage</td>
<td></td>
</tr>
<tr>
<td>Analgesic DF118</td>
<td>10 tabs</td>
</tr>
<tr>
<td>Bupronorphine (Temgesic)</td>
<td>for pain relief</td>
</tr>
<tr>
<td>Stemetil tablets</td>
<td>5</td>
</tr>
<tr>
<td>Scissors, safety pins</td>
<td></td>
</tr>
</tbody>
</table>

In addition if doctor present

(additional equipment to cope with major accident)

- IV fluids and Giving Sets
- Plaster and Velvand
- Needles, syringes, injection swabs

IV drugs:

- Analgesic - Fortral, Temgesic
- Antibiotics - Cloxacillin
- Antisickness - Maxolon
- Steroids/Shock - Hydrocortisone

T. Lyons,
107 Hadfield St.,
Upper Walkley,
Sheffield.
LATERAL FACIES CHANGES, UNCONFORMITIES AND STRATIGRAPHIC REVERSALS: THEIR SIGNIFICANCE FOR CAVE SEDIMENT STRATIGRAPHY

R. A. L. Osborne

Abstract

Lateral facies changes, unconformities, and stratigraphic reversals must be recognised if the often complex stratigraphy of cave sediments is to be understood. The variety of depositional mechanisms operating in caves makes lateral facies changes common.

Primary Unconformities separate sequences of cave sediments from bedrock and are distinguished from secondary unconformities occurring within the sediments. Both types of unconformity may have a complex geometry and result in stratigraphic reversal. Erosion of soft sediments from under flowstone and indurated horizons may also result in stratigraphic reversal.

Considerable errors in stratigraphic interpretation will result if these particular characteristics are not recognized.

INTRODUCTION

The stratigraphy of cave sediments is often complex. This results from the variety of depositional processes that occur in caves, and the tendency for cave passages, once formed, to be the loci of a series of depositional and erosional events.

Percy (1864) recognised the surface origin of many clastic cave sediments and the existence of unconformable and reverse stratigraphic relationships within them. Summarising the paleontological and archaeological approaches to cave sediments, Schrid (1963) and Subcliff (1976) both illustrate the importance of lateral facies changes.

Stratigraphic studies of cave sediments in the Transvaal, South Africa, have resulted not only in the recognition of unconformities, lateral facies changes, and stratigraphic reversals but also in the formal stratigraphic definition of units of cave deposits. Significant contributions to this work have been made by Brijin (1955, 1967), Butzer (1976), and Partridge (1973, 1978, 1979). A useful summary of this work has been provided by Kent (1980).

Stratified cave deposits have been significant sources of Quaternary and, in places, Tertiary fossils and archaeological material, and have the potential to reveal much about Cenozoic history. Reliable interpretation is not possible unless the complexity of cave deposits and the significance of lateral facies changes, unconformities, and stratigraphic reversals is fully realised.

THE COMPLEXITY OF CAVE DEPOSITS

Compared with many depositional environments, limestone caves are very small indeed. Even the world's largest cave has a volume only in the order of 2 to 3 km³ (Jennings, 1971). Within these small volumes, however, a number of very different depositional processes may proceed contemporaneously resulting in a diversity of sediments being deposited in spatial and temporal proximity. It is this diversity of sedimentary processes, the action of both vadose and phreatic erosive forces, and the small size of caves that leads to the complexity of cave deposits.

To illustrate this point several types of deposits found in caves are shown in Fig. 1. It is important to realise that clastic and non-clastic sediments can be deposited in both vadose and phreatic environments. In Fig. 1 the phreatic is a low energy environment and thus has laminated clays and turbidites deposited in it. In an epiphreatic coarse fluviatile clastic would be deposited. Active vadose streams are not illustrated in Fig. 1, but such streams may be both erosive and depositional, behaving much like surface streams.

The presence of dissolved in cave waters not carbonates results in the deposition of many non-clastic sediments but is also responsible for the cementation of most cave clastics. As with other diagenetic environments both vadose and phreatic cementation may occur in cave sediments and this will contribute to the range of lithologies present.

The contribution of biological activity to deposition in caves is significant. Bioclastic deposits, particularly of bone, are common in caves as are deposits of guano. Both of these act as a source of phosphate which is a significant component of non-clastic deposits. Bacterial action also plays a role in the deposition of non-clastic cave deposits. Burrowing and biocementation by infauna (Pleace, 1975) adds to the complexity of cave deposits.

The development of high initial dip is also an important feature of some cave deposits. This may develop in fine-grained sediment deposited in a sloping substrate, in entrance facies deposits (particularly those forming part of a talus cone), and in flowstone. High initial dip has been reported at Bungonia Caves, New South Wales, by Jennings et al. (1972) and from caves in the south of Wales by Bull (1977). Bull has shown that laminated fine-grained sediments can remain such that 70°, and in some instances adhesive to vertical surfaces. High initial dip can make the interpretation of palaeokarst deposits in folded rocks particularly difficult.
Fig. 1. Some types of cave sediments: A, stream deposit; B, laminated clay; C, turbidite fan; D, subaqueous precipitation deposit; E, floe calcite; F, spar crystals; G, speleothems; H, talus cone; I, guano; J, breakdown pile; K, entrance facies.

Fig. 2. Effects of lateral facies change on chronostratigraphy.
LATERAL FACIES CHANGES

In their application of the facies concept to cave deposits Kukla & Lozek (1958) recognised that both vertical and horizontal facies relationships occur within the cave environment. Kukla & Lozek's concept of an "entrance facies" and an "interior facies" was based on the recognition that the composition and depositional mode of sediments change with their distance from the cave entrance. These changes are clearly illustrated in hypothetical diagrams by Kukla & Lozek (1958), Sutcliffe (1970), and Ford (1976), and in diagrams of sections through actual cave deposits such as those of Gillieson & Mountain (1981) and Hypr (1977).

Since few studies have attempted to correlate strata between localities within cave systems, only the local effects of lateral facies changes on stratigraphy have been considered. From the extent of these changes it might be expected that correlation within a single cave or between adjacent caves would be almost impossible. Despite this some correlations have been achieved.

Brain (1958) in his study of the Makapan Lineworks in the Transvaal measured 11 profiles up to 180 m apart within the cave deposit and was able to correlate between them by recognition of his "phases". Frank (1971) was able to correlate his "units" at Wellington Caves, New South Wales, between caves up to 60 m apart while Osborne (1978), working at Cliefden Caves, New South Wales, recognized the same unit in separate caves 1.5 m apart.

These apparently successful correlations should not be seen as reducing the importance of lateral facies changes in cave deposits. Only a few sequences of cave sediments have been studied in sufficient detail to allow lithostratigraphic correlation to be attempted, and where this has been successful the sediments involved have mostly been low energy phreatic deposits which would be expected to be laterally extensive. It should be remembered that both Frank's and Osborne's correlations are entirely lithostratigraphic and could be the result of similar deposits being produced in adjacent caves at quite different times. Osborne (1983) has suggested that this is the case with the correlations made by Frank (1971).

The effect of lateral facies changes on the chronostratigraphy of cave sediments is illustrated in Fig. 2. Fig. 2A shows a talus core of entrance facies deposits slumping into still water and producing a fan. As the slumped sediment moves away from the shoreline (of the turbidity current) it is deposited progressively as slump breccia, disorganized conglomerate, organised conglomerate, graded bedded sand and finally as laminated silt and clay. The boundaries between these facies are diachronous, with the depositional surface forming a time line.

Fig. 2B shows the situation when the talus cone has enlarged and the fan prograded. As this process continues the facies boundaries become more horizontal although still remaining diachronous. The air/water interface now marks an important facies change between the subaerial talus cone facies and the subaqueous fan facies. In this simplified example it is assumed that the water level has remained constant and that no major depositional events have occurred. Under such stable conditions the boundary between the cone and fan facies will be fairly horizontal.

In Fig. 2C deposition has continued and displaced the water with all of the area in question now being a site for entrance facies deposition. The facies boundaries are now almost horizontal and the time line towards the distal end of the deposit is also becoming horizontal.

Fig. 2D shows a lithostratigraphic column taken at "B". Although the entrance facies at "A" and "B" are lithologically equivalent, the entrance facies at "A" is a time equivalent of the slumped talus/cone facies which forms at the base of the column at "B". It is thus possible for entrance facies deposits to range over the whole time span of deposition in a cave and yet be lithostratigraphically the highest unit.

Lateral facies changes must be taken into account in palaeontological and archaeological studies of cave deposits, otherwise incorrect correlations will occur.

UNCONFORMITIES

Recognition of unconformable relationships between strata is essential to the understanding of sequences of cave sediments. The types of exposure found in caves can often make it difficult to recognise the relationships between units. When considering the nature of unconformities between units within a sequence of cave sediments it is instructive to begin by examining the nature of the primary unconformity between the sequence of cave sediments as a whole and the enclosing bedrock.

1. Primary Unconformities.

A primary unconformity separates sequences of cave sediments from the enclosing bedrock. As can be seen in Fig. 3, the primary unconformity corresponds to the cave walls and floor. In Fig. 3A, the most common case, the unconformity is horizontal at the base of the sequence and then becomes vertical, cave sediments having a lateral relationship with bedrock. Fig. 3B illustrates a completely sediment-filled cave in cross-section. In this case the whole outline of the cave is an unconformity, and at the roof, sediments unconformably underlie bedrock.

Because in any part of a sequence of cave sediments may have a vertical unconformity (i.e., cave wall) between them and the bedrock, however, complex passage shapes, such as vadose canyons, can result in more than one unit having a horizontal primary unconformity. In Fig. 3C both the oldest unit, dashed, and the youngest unit, stippled, have a horizontal primary unconformity. Consideration of exposure patterns of some primary unconformities from caves and palaeokarsts in New South Wales are shown in Plate 1.
Plate 1.

Primary unconformities in caves and palaeokarsts in New South Wales.

A. Primary unconformity exposed in quarry face at Mt Fairy, New South Wales.
B. Primary unconformity between ?Permian palaeokarst sandstone and Silurian limestone in surface exposure at Billy's Creek, New South Wales.
C. Primary unconformity showing tunnel outline exposed in cave wall. Wollondilly Cave, Wombeyan Caves, New South Wales. Lens cap 55 mm.
Plate 2.

Secondary unconformities exposed in New South Wales caves.
A. Secondary unconformity between graded-bedded bone-rich sandstone (older, left hand side) and partly cemented entrance facies (younger, right), boundary enhanced. Phosphate Mine, Wellington Caves, New South Wales. Rule 0.5 m.
B. Vertical secondary unconformity exposed in roof of tunnel. Older unit (light coloured) is on left. Bone Cave, Wellington Caves, New South Wales.
C. Primary and secondary unconformities exposed in wall of Main Cave, Timor Caves, New South Wales. "a", primary unconformity between bedrock and palaeokarst speleothem, "b" secondary unconformity between palaeokarst speleothem and recent flowstone. Pen 140 mm long.
D. Secondary unconformity between laminated clay (older unit, at top and behind) and gravel (younger unit, at bottom and in front). Bullio Cave, Wombeyan Caves, New South Wales. Scale 1 m.

Unconformities can occur within sequences of cave sediments. It is important to realise that these unconformities are of quite a different level of significance from that of primary unconformities. To make this distinction clear, unconformities within sequences of cave sediments are described here as secondary unconformities.

Fig. 4 shows some of the types of secondary unconformity that can arise when deposition follows a period of erosion of cave sediments. The simplest form of secondary unconformity is a scour and fill structure as illustrated in Fig. 4A. Here a vadose channel has formed in older units and has been filled with sediments. Fig. 4B illustrates the effect of deposition in a channel eroded in sediments when the original cave is a vadose canyon. One of the main importance of the vertical nature of the unconformity and the lateral relationship between units of different ages, in this example traces of the older unit remain in channel cuts. This will not always be the case.

Fig. 4C & D illustrate what occurs when erosion of cave deposits produces a tunnel rather than an open scour. This type of situation is particularly likely to occur if the original sediment is indurated or contains beds of flowstone (Pengelly, 1864). The new tunnels can have a variety of cross-sectional shapes and younger sediments can be introduced into tunnels at any level within the older strata, Fig. 4C & D.

Lack of conformity can also occur where deposition of horizontally stratified sediments follows a period of speleothem growth or wall coating. In Fig. 5a the cave has developed a wall coating as a result of flooding by a mineralizing solution. Lamination within the coating will be parallel to the wall surface while bedding in the younger clastic sediment will be horizontal. Unconformities between units of cave sediments need not represent significant breaks in deposition or periods of erosion. In Fig. 5B a clastic influx has occurred following a period of speleothem deposition. Once again, for most of the contact between the two deposits there is an unconformable boundary although deposition of the clastics may have directly followed, or been partly contemporaneous with, growth of the speleothem.

Brain (1967) noted that floor collapse in caves could result in unconformities similar to those illustrated in Fig. 4. He observed that undermining of a sediment-filled cave (by speleogenesis at a lower level) could cause its floor to collapse, leading to the production of a breakdown chamber within the sediment. Deposition of new sediments within this chamber would produce what he described as a "stratigraphic sandwich" with new deposits interlayered between layers of older sediment.

3. Exposure Patterns of Unconformities in Caves.

In the cases discussed above, the unconformity has been illustrated by diagrams showing cave passages in cross-section perpendicular to their long axes. Natural exposures in caves, and artificial exposures in excavations and mine passages, usually do not have this ideal orientation. It is necessary then to consider some alternative orientations of these structures.

Fig. 6 presents some of the structures illustrated in Fig. 4 viewed in longitudinal section rather than cross-section. Fig. 6A illustrates a longitudinal section through an unconformity such as that in Fig. 4A. In this profile ("1" in Fig. 4A) through the side of the deposit, the two units have a disconformable relationship that would not be easily recognised as the scour and fill relationship seen in Fig. 4A. A similar longitudinal section (4B, "1") through the sequence illustrated in Fig. 4B would not expose the younger unit at all.

Fig. 6B illustrates the longitudinal section that might occur at "2" in Fig. 4A. This could easily be interpreted as an interbedded sequence rather than as two unconformable units, occurred following a period of speleothem deposition. Once again, for most of the contact between the two deposits there is an unconformable boundary although deposition of the clastics may have directly followed, or been partly contemporaneous with, growth of the speleothem. Fig. 6C illustrates, while Fig. 6D is the section developed at "1" on Fig. 4D. These cases show how complex the "stratigraphic sandwich" may become.

In Fig. 7 a cave passage has developed along the surface of a secondary unconformity. An observer at point "X" would see a vertical boundary between the two units as is illustrated in Fig. 7B. A relationship of this type is found in the Bone Cave at Wellington Caves, New South Wales and is shown in Plate 2A.

Fig. 8 shows how an irregular original passage shape and an undercutting incision can produce a slipping secondary unconformity. If the areas within the dashed line were exposed in a passage, as in Fig. 8B the first unit could be misinterpreted as being the younger filling a space between the cave wall and the second unit. Unconformities of these types have been recognised in New South Wales caves by Osborne (1983, 1984) and some of these are illustrated in Plate 2.

STRATIGRAPHIC REVERSIONS

Stratigraphic reversal occurs when strata are found with younger beds apparently underl yi ng older beds. In the case of cave sediments this usually means that the younger strata will be physically below older ones.

The formation of passages within cave sediments and their later infilling may result in the production of stratigraphic reversals within sequences of cave sediments. Stratigraphic reversals are most likely to occur if the original deposit contains indurated beds or layers of flowstone. Since layers of flowstone are resistant to erosion they can remain intact as false floors after underlying sediment has been eroded away. This was first recognised by Pengelly (1864).

How a reverse stratigraphic relationship can develop between two flowstone floors is illustrated in Fig. 9. Fig. 9a shows a sequence producing two false floors with normal stratigraphy. In "1" a layer of flowstone is deposited on top of a layer of soft sediment.

180
Fig. 3. Primary unconformities.

Fig. 4. Secondary unconformities. "1" & "2" are vertical sections illustrated in Fig. 6.

Fig. 5. Unconformities caused by initial dip.
Fig. 6. Unconformities viewed in longitudinal section.

Fig. 7. Exposure of unconformity in tunnel.

Fig. 8. Exposure of unconformity in tunnel wall.
In "2" more soft sediment is deposited which is followed in "3" by the deposition of a second layer of flowstone. Erosion then cuts down through both flowstone layers to reveal two flowstone false floors in normal stratigraphic sequence.

In Fig. 9B a sequence of events producing reverse stratigraphy is illustrated. In "1" soft sediments are overlain by flowstone. The flowstone and the underlying sediment is then incised by an erosional event resulting in the situation depicted in "2". After further erosion another layer of flowstone is deposited, "3", then a further period of erosion results in the production of two false floors, the lower of which is younger than the upper.

It can be seen that if this process were to continue the stratigraphy of a single cave passage could become quite complex. Since beds of flowstone and other indurated sediments are common in sequences of cave sediments stratigraphic reversal may often occur without being recognised. In many cases radiometric dating of flowstone beds may be the only means of solving these problems.

IMPLICATIONS FOR INTERPRETATION

Lateral facies changes, unconformities, and stratigraphic reversals should be expected to occur frequently in sequences of cave sediments, yet they are not widely reported in the literature. If the stratigraphy of cave sediments is to be correctly interpreted it is vital that these types of relationships do not go unrecognised. Due to the types of exposure in which sequences of cave sediments are found it is often difficult to recognise the relationships between the various units. However, an awareness of the likely stratigraphic complexity of cave sediments among workers should lead to more reliable interpretations than have been available to date.

The progress made by both South African and Tasmanian workers clearly shows what can be achieved in the study of cave sediments if the complexity of cave sediments, lateral facies changes, unconformable relationships and stratigraphic reversals are taken into account.

A. NORMAL STRATIGRAPHY

B. REVERSE STRATIGRAPHY

Fig. 9. False flowstone floors.
ACKNOWLEDGMENTS

The ideas developed in this paper have resulted from the author's continuing studies of cave sediments and the geological history of caves and karst in the Department of Geology and Geophysics, University of Sydney. During the course of the work Dr. E. Frankel, Associate Professor B.D. Webby and more recently, Associate Professor D.F. Branagan have assisted with both encouragement and criticism.

This paper owes much to the interest of the late Dr. J.N. Jennings of the Research School of Pacific Studies, Australian National University, who made many helpful comments on the draft.

REFERENCES

Frank, R.M. 1972 Sedimentary and morphological development of the Borenore Caves, New South Wales, 1.

Frank, R.M. 1973 Sedimentary and morphological development of the Borenore Caves, New South Wales, II. Helictite Vol. 11, no. 2, pp. 27-44.

R.A.L. Osborne
Department of Geology & Geophysics,
University of Sydney,
N.S.W. 2006,
Australia.

Revised NS Received 28th August, 1984.

184
NOW AVAILABLE

LIMESTONES AND CAVES OF THE PEAK DISTRICT
compiled and edited by T. D. Ford

published by "Geo-books" c/o Geo-Abstracts Ltd.
University of East Anglia, Norwich
469 pages. £11.50 soft back; £15 hard back.
Available from B.C.R.A. Sales

THE BRITISH NEW GUINEA SPELEOLOGICAL EXPEDITION
compiled by Dave Brook
(Transactions British Cave Research Association
Volume 3, combined nos 3 & 4, 1976)
Available from B.C.R.A. Sales
£3 (plus p & p £1)

DAN YR OGOF
by Alan Coase & Dave Judson
(Transactions of the British Cave Research Association
Volume 4, combined nos 1 & 2, 1977)
(With large survey sheets)
Available from B.C.R.A. Sales
£4.50 (plus p & p £1)

Write for full price list of other B.C.R.A. publications

B.C.R.A. Sales c/o 30 Main Road, Westonzoyland, Bridgwater, Somerset.
CAVE SCIENCE

The TRANSACTIONS OF THE BRITISH CAVE RESEARCH ASSOCIATION covers all aspects of speleological science, including geology, geomorphology, hydrology, chemistry, physics, archaeology and biology in their application to caves, as well as technological matters such as exploration, equipment, surveying, photography and documentation. Papers may be read at General Meetings held in various parts of Britain, but they may be submitted for publication without being read. Manuscripts should be sent to the Editor, Dr. T.D. Ford, Geology Department, University of Leicester, Leicester LE1 7RH, who will be pleased to advise in cases of doubt about the preparation of manuscripts. The Transactions is normally issued four times a year to paid-up members of the British Cave Research Association. Subscriptions are due on 1st January annually.

MEMBERS OF BCRA COUNCIL FOR 1984

President: Dr. G.T. Jefferson, Zoology Dept., University College, PO Box 78, Cardiff CF1 1XL.
Chairman: B.M. Ellis, 30 Main Road, Westonzyoland, Bridgwater, Somerset.
Dept. Chairman: J.J. Rowland, Llywn yr Eos, Capel Bangor, Aberystwyth, Dyfed, SY23 3LR.
Secretary: Dick Willis, 56 Granby Hill, Clifton, Bristol BS8 4LS
Membership Secretary: David R. Stoddard, 23 Claremont Avenue, Bishopston, Bristol BS7 8JD.
Treasurer: J.W. Dey, 16 Edge Hill Road, Sheffield S7 1SP.
Transactions Editor: Dr. T.D. Ford, Department of Geology, The University, Leicester LE1 7RH.
Bulletin Editor: J.S. Corrin, 55 Osborne Terrace, Bacup, Lancs OL13 8JY.
Librarian: Roy Paulson, Holt House, Holt Lane, Lea, Matlock, Derbyshire.
Foreign Secretary: J.R. Middleton, 2 Broad Elms Close, Sheffield S11 9BT.
Conservation Officer: D.M. Judson, Rowlands House, Summerseat, Bury, Lancs BL9 5NF.
Sales Officer: B.M. Ellis, 30 Main Road, Westonzyoland, Bridgwater, Somerset.
Biological Recorder: M.C. Day, 118 Whitmore Road, Harrow HA1 4AQ.
Archaeological Recorder: Dr. J.D. Wilcock, 22 Kingsley Close, Stafford ST17 8BT.
Meetings Manager: Dr. R.G. Picknett, 28 Potters Way, Laverton, Salisbury, Wilts SP1 IPX.
Distribution Manager: Sam Moore, Havencourt, The Parks, Aldington, Evesham.
Insurance Manager: Geoff Wells, 39 Linden Road, Redland, Bristol BS6.
Advertising Manager: Keith Plumb, 11 Copper Beech Way, Leighton Buzzard, Bedfordshire LU7 8BD.
Southern Club Representative: Peter Robertson, 36 Tadfield Road, Romsey, Hants S05 8AJ.
Co-opted Members: Dr. A.C. Waltham, Civil Engineering Dept., Trent Polytechnic, Nottingham NG1 4BU.
Special Projects Editor: A. Eavis, Tides Reach, Redcliff Road, Hessle, N. Humberside HU13 OHA.
Equipment and Techniques Officer:

1984 SUBSCRIPTIONS

Members are respectfully reminded that their subscriptions for 1984 are due. The rates for the coming year (unchanged from 1983) are:

Full individual membership £10.00
Joint membership
(i.e. one set of publications) £12.50
Member Club .. £12.50

All payments should be sent to Membership Secretary, Dave Stoddard, 23 Claremont Avenue, Bishopston, Bristol BS7 8JD. Cheques made payable to 'British Cave Research Association'.

Members are respectfully reminded that their subscriptions for 1984 are due.